Trends in Research on Artificial Intelligence in Anesthesia: A VOSviewer-Based Bibliometric Analysis

被引:4
作者
Cascella, Marco [1 ]
Perri, Francesco [2 ]
Ottaiano, Alessandro [3 ]
Cuomo, Arturo [1 ]
Wirz, Stefan [4 ]
Coluccia, Sergio [5 ]
机构
[1] Ist Nazl Tumori IRCCS Fdn Pascale, Div Anesthesia & Pain Med, Naples, Italy
[2] IRCCS Fdn G Pascale, Ist Nazl Tumori, Med & Expt Head & Neck Oncol Unit, Naples, Italy
[3] IRCCS G Pascale, Ist Nazl Tumori Napoli, SSD Innovat Therapies Abdominal Metastases, Via M Semmola, I-80131 Naples, Italy
[4] GFO Kliniken Bonn, Cura Krankenhaus, Zent Schmerzmed, Abt Anasthesie Interdisziplinare Intens Med Schmer, Schulgenstr 15, D-53604 Bad Honnef, Germany
[5] IRCCS Fdn G Pascale, Ist Nazl Tumori, Epidemiol & Biostat Unit, I-80100 Naples, Italy
来源
INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE | 2022年 / 25卷 / 70期
关键词
Artificial Intelligence; Anesthesia; Bibliometric analysis; Machine Learning; Deep Learning; Network analysis;
D O I
10.4114/intartif.vol25iss70pp126-137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: The scientific literature on Artificial Intelligence (AI) in anesthesia is rapidly growing. Considering that applications of AI strategies can offer paramount support in clinical decision processes, it is crucial to delineate the research features. Bibliometric analyses can provide an overview of research tendencies useful for supplementary investigations in a research field. Methods: The comprehensive literature about AI in anesthesia was checked in the Web of Science (WOS) core collection. Year of publication, journal metrics including impact factor and quartile, title, document type, topic, and article metric (citations) were extracted. The software tool VOSviewer (version 1.6.17) was implemented for the co-occurrence of keywords and the co-citation analyses, and for evaluating research networks (countries and institutions). Results: Altogether, 288 documents were retrieved from the WOS and 154 articles were included in the analysis. The number of articles increased from 4 articles in 2017 to 37 in 2021. Only 34 were observational investigations and 7 RCTs. The most relevant topic is "anesthesia management". The research network for countries and institutions shows severe gaps. Conclusion: Research on AI in anesthesia is rapidly developing. Further clinical studies are needed. Although different topics are addressed, scientific collaborations must be implemented.
引用
收藏
页码:126 / 137
页数:12
相关论文
共 28 条
  • [1] A Combinatorial Deep Learning Structure for Precise Depth of Anesthesia Estimation From From EEG Signals
    Afshar, Sara
    Boostani, Reza
    Sanei, Saeid
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (09) : 3408 - 3415
  • [2] The present and future role of artificial intelligence and machine learning in anesthesiology
    Alexander, John C.
    Romito, Bryan T.
    Cobanoglu, Murat Can
    [J]. INTERNATIONAL ANESTHESIOLOGY CLINICS, 2020, 58 (04) : 7 - 16
  • [3] Bellini Valentina, 2022, Acta Biomed, V93, pe2022297, DOI 10.23750/abm.v93i5.13626
  • [4] Different Machine Learning Approaches for Implementing Telehealth-Based Cancer Pain Management Strategies
    Cascella, Marco
    Coluccia, Sergio
    Monaco, Federica
    Schiavo, Daniela
    Nocerino, Davide
    Grizzuti, Mariacinzia
    Romano, Maria Cristina
    Cuomo, Arturo
    [J]. JOURNAL OF CLINICAL MEDICINE, 2022, 11 (18)
  • [5] Bibliometric Network Analysis on Rapid-Onset Opioids for Breakthrough Cancer Pain Treatment
    Cascella, Marco
    Monaco, Federica
    Nocerino, Davide
    Chine, Elisabetta
    Carpenedo, Roberta
    Picerno, Paola
    Migliaccio, Laura
    Armignacco, Angela
    Franceschini, Giulia
    Coluccia, Sergio
    Di Gennaro, Piergiacomo
    Tracey, Maura C.
    Forte, Cira A.
    Tafuri, Mariangela
    Crispo, Anna
    Cutugno, Francesco
    Vittori, Alessandro
    Natoli, Silvia
    Cuomo, Arturo
    [J]. JOURNAL OF PAIN AND SYMPTOM MANAGEMENT, 2022, 63 (06) : 1041 - 1050
  • [6] Cascella Marco AI_Anesthesia_WoS, 2022, ZENODO
  • [7] Coelho A., 2017, INTELIGENCIA ARTIFIC, V20, P42, DOI [10.4114/intartif.vol20iss59pp42-52, DOI 10.4114/INTARTIF.VOL20ISS59PP42-52]
  • [8] Artificial Intelligence and Machine Learning in Anesthesiology
    Connor, Christopher W.
    [J]. ANESTHESIOLOGY, 2019, 131 (06) : 1346 - 1359
  • [9] Facial Image Analysis for Fully Automatic Prediction of Difficult Endotracheal Intubation
    Cuendet, Gabriel Louis
    Schoettker, Patrick
    Yuece, Anil
    Sorci, Matteo
    Gao, Hua
    Perruchoud, Christophe
    Thiran, Jean-Philippe
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (02) : 328 - 339
  • [10] Interval type-2 fuzzy neural network controller for a multivariable anesthesia system based on a hardware-in-the-loop simulation
    El-Nagar, Ahmad M.
    El-Bardini, Mohammad
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2014, 61 (01) : 1 - 10