NEW MULTICATEGORY BOOSTING ALGORITHMS BASED ON MULTICATEGORY FISHER-CONSISTENT LOSSES

被引:62
作者
Zou, Hui [1 ]
Zhu, Ji [3 ]
Hastie, Trevor [2 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
关键词
Boosting; Fisher-consistent losses; multicategory classification;
D O I
10.1214/08-AOAS198
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Fisher-consistent loss functions play a fundamental role in the construction of successful binary margin-based classifiers. In this paper we establish the Fisher-consistency condition for multicategory classification problems. Our approach uses the margin vector concept which can be regarded as a multicategory generalization of the binary margin. We characterize a wide class of smooth convex loss functions that are Fisher-consistent for multicategory classification. We then consider using the margin-vector-based loss functions to derive multicategory boosting algorithms. In particular, we derive two new multicategory boosting algorithms by using the exponential and logistic regression losses.
引用
收藏
页码:1290 / 1306
页数:17
相关论文
共 22 条
[1]   Reducing multiclass to binary: A unifying approach for margin classifiers [J].
Allwein, EL ;
Schapire, RE ;
Singer, Y .
JOURNAL OF MACHINE LEARNING RESEARCH, 2001, 1 (02) :113-141
[2]  
[Anonymous], 1998, UCI REPOSITORY MACHI
[3]   On the rate of convergence of regularized boosting classifiers [J].
Blanchard, G ;
Lugosi, G ;
Vayatis, N .
JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 4 (05) :861-894
[4]   Boosting algorithms: Regularization, prediction and model fitting [J].
Buehlmann, Peter ;
Hothorn, Torsten .
STATISTICAL SCIENCE, 2007, 22 (04) :477-505
[5]   Boosting with the L2 loss:: Regression and classification [J].
Bühlmann, P ;
Yu, B .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) :324-339
[6]  
Buja Andreas, 2005, Loss Functions for Binary Class Probability Estimation and Classification: Structure and Applications
[7]   A decision-theoretic generalization of on-line learning and an application to boosting [J].
Freund, Y ;
Schapire, RE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) :119-139
[8]   Additive logistic regression: A statistical view of boosting - Rejoinder [J].
Friedman, J ;
Hastie, T ;
Tibshirani, R .
ANNALS OF STATISTICS, 2000, 28 (02) :400-407
[9]  
Friedman J, 2001, The elements of statistical learning, V1, DOI DOI 10.1007/978-0-387-21606-5
[10]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232