PRODUCTION OF A PRELIMINARY QUALITY CONTROL PIPELINE FOR SINGLE NUCLEI RNA-SEQ AND ITS APPLICATION IN THE ANALYSIS OF CELL TYPE DIVERSITY OF POST-MORTEM HUMAN BRAIN NEOCORTEX

被引:0
作者
Aevermann, Brian [1 ]
Mccorrison, Jamison [1 ]
Venepally, Pratap [1 ]
Hodge, Rebecca [2 ]
Bakken, Trygve [2 ]
Miller, Jeremy [2 ]
Novotny, Mark [1 ]
Tran, Danny N. [1 ]
Diez-Fuertes, Francisco [1 ,3 ]
Christiansen, Lena [4 ]
Zhang, Fan [4 ]
Steemers, Frank [4 ]
Lasken, Roger S. [1 ]
Lein, Ed [2 ]
Schork, Nicholas [1 ]
Scheuermann, Richard H. [1 ,5 ,6 ]
机构
[1] J Craig Venter Inst, 1120 Capricorn Lane, La Jolla, CA 92037 USA
[2] Allen Inst Brain Sci, 615 Westlake Ave North, Seattle, WA 98103 USA
[3] Inst Salud Carlos 111, Cent Nacl Alicrobiol, Madrid, Spain
[4] Illumina Inc, 5200 Illumina Way, San Diego, CA 02122 USA
[5] Univ Calif San Diego, Dept Pathol, La Jolla, CA 92093 USA
[6] La Jolla Inst Allergy & Immunol, Div Vaccine Discovery, 9420 Athena Circle, La Jolla, CA 92037 USA
来源
PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017 | 2017年
关键词
HETEROGENEITY; TRANSCRIPTOME; NEURONS;
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Next generation sequencing of the RNA content of single cells or single nuclei (sc/nRNA-seq) has become a powerful approach to understand the cellular complexity and diversity of multicellular organisms and environmental ecosystems. However, the fact that the procedure begins with a relatively small amount of starting material, thereby pushing the limits of the laboratory procedures required, dictates that careful approaches for sample quality control (QC) are essential to reduce the impact of technical noise and sample bias in downstream analysis applications. Here we present a preliminary framework for sample level quality control that is based on the collection of a series of quantitative laboratory and data metrics that are used as features for the construction of QC classification models using random forest machine learning approaches. We've applied this initial framework to a dataset comprised of 2272 single nuclei RNA-seq results and determined that similar to 79% of samples were of high quality. Removal of the poor quality samples from downstream analysis was found to improve the cell type clustering results. In addition, this approach identified quantitative features related to the proportion of unique or duplicate reads and the proportion of reads remaining after quality trimming as useful features for pass/fail classification. The construction and use of classification models for the identification of poor quality samples provides for an objective and scalable approach to sc/nRNA-seq quality control.
引用
收藏
页码:564 / 575
页数:12
相关论文
共 28 条
  • [1] Defining the three cell lineages of the human blastocyst by single-cell RNA-seq (vol 142, pg 3151, 2015)
    Blakeley, Paul
    Fogarty, Norah M. E.
    del Valle, Ignacio
    Wamaitha, Sissy E.
    Hu, Tim Xiaoming
    Elder, Kay
    Snell, Philip
    Christie, Leila
    Robson, Paul
    Niakan, Kathy K.
    [J]. DEVELOPMENT, 2015, 142 (20): : 3613 - 3613
  • [2] Blakeley P, 2015, DEVELOPMENT, V142, P3151, DOI [10.1242/dev.123547, 10.1242/dev.131235]
  • [3] Single-Cell Genomics for Virology
    Ciuffi, Angela
    Rato, Sylvie
    Telenti, Amalio
    [J]. VIRUSES-BASEL, 2016, 8 (05):
  • [4] Linking the T cell receptor to the single cell transcriptome in antigen-specific human T cells
    Eltahla, Auda A.
    Rizzetto, Simone
    Pirozyan, Mehdi R.
    Betz-Stablein, Brigid D.
    Venturi, Vanessa
    Kedzierska, Katherine
    Lloyd, Andrew R.
    Bull, Rowena A.
    Luciani, Fabio
    [J]. IMMUNOLOGY AND CELL BIOLOGY, 2016, 94 (06) : 604 - 611
  • [5] Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity
    Gaublomme, Jellert T.
    Yosef, Nir
    Lee, Youjin
    Gertner, Rona S.
    Yang, Li V.
    Wu, Chuan
    Pandolfi, Pier Paolo
    Mak, Tak
    Satija, Rahul
    Shalek, Alex K.
    Kuchroo, Vijay K.
    Park, Hongkun
    Regev, Aviv
    [J]. CELL, 2015, 163 (06) : 1400 - 1412
  • [6] RNA-sequencing from single nuclei
    Grindberg, Rashel V.
    Yee-Greenbaum, Joyclyn L.
    McConnell, Michael J.
    Novotny, Mark
    O'Shaughnessy, Andy L.
    Lambert, Georgina M.
    Arauzo-Bravo, Marcos J.
    Lee, Jun
    Fishman, Max
    Robbins, Gillian E.
    Lin, Xiaoying
    Venepally, Pratap
    Badger, Jonathan H.
    Galbraith, David W.
    Gage, Fred H.
    Lasken, Roger S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (49) : 19802 - 19807
  • [7] Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics
    Handel, Adam E.
    Chintawar, Satyan
    Lalic, Tatjana
    Whiteley, Emma
    Vowles, Jane
    Giustacchini, Alice
    Argoud, Karene
    Sopp, Paul
    Nakanishi, Mahito
    Bowden, Rory
    Cowley, Sally
    Newey, Sarah
    Akerman, Colin
    Ponting, Chris P.
    Cader, M. Zameel
    [J]. HUMAN MOLECULAR GENETICS, 2016, 25 (05) : 989 - 1000
  • [8] Classification of low quality cells from single-cell RNA-seq data
    Ilicic, Tomislav
    Kim, Jong Kyoung
    Kolodziejczyk, Aleksandra A.
    Bagger, Frederik Otzen
    McCarthy, Davis James
    Marioni, John C.
    Teichmann, Sarah A.
    [J]. GENOME BIOLOGY, 2016, 17
  • [9] Jiang P., 2016, Bioinformatics, pbtw176
  • [10] Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons
    Krishnaswami, Suguna Rani
    Grindberg, Rashel V.
    Novotny, Mark
    Venepally, Pratap
    Lacar, Benjamin
    Bhutani, Kunal
    Linker, Sara B.
    Pham, Son
    Erwin, Jennifer A.
    Miller, Jeremy A.
    Hodge, Rebecca
    McCarthy, James K.
    Kelder, Martijn
    McCorrison, Jamison
    Aevermann, Brian D.
    Diez Fuertes, Francisco
    Scheuermann, Richard H.
    Lee, Jun
    Lein, Ed S.
    Schork, Nicholas
    McConnell, Michael J.
    Gage, Fred H.
    Lasken, Roger S.
    [J]. NATURE PROTOCOLS, 2016, 11 (03) : 499 - U281