Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data

被引:127
|
作者
Kim, Jong Kyoung [1 ]
Marioni, John C. [1 ]
机构
[1] European Bioinformat Inst EMBL EBI, Hinxton CB10 1SD, Cambs, England
来源
GENOME BIOLOGY | 2013年 / 14卷 / 01期
关键词
gene regulation; RNA-seq; single-cell; statistics; transcriptional burst; EMBRYONIC STEM-CELLS; SEQ; NOISE; DYNAMICS; STATE;
D O I
10.1186/gb-2013-14-1-r7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genetically identical populations of cells grown in the same environmental condition show substantial variability in gene expression profiles. Although single-cell RNA-seq provides an opportunity to explore this phenomenon, statistical methods need to be developed to interpret the variability of gene expression counts. Results: We develop a statistical framework for studying the kinetics of stochastic gene expression from single-cell RNA-seq data. By applying our model to a single-cell RNA-seq dataset generated by profiling mouse embryonic stem cells, we find that the inferred kinetic parameters are consistent with RNA polymerase II binding and chromatin modifications. Our results suggest that histone modifications affect transcriptional bursting by modulating both burst size and frequency. Furthermore, we show that our model can be used to identify genes with slow promoter kinetics, which are important for probabilistic differentiation of embryonic stem cells. Conclusions: We conclude that the proposed statistical model provides a flexible and efficient way to investigate the kinetics of transcription.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] Cell type matching in single-cell RNA-sequencing data using FR-Match
    Zhang, Yun
    Aevermann, Brian
    Gala, Rohan
    Scheuermann, Richard H.
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [32] Design and computational analysis of single-cell RNA-sequencing experiments
    Bacher, Rhonda
    Kendziorski, Christina
    GENOME BIOLOGY, 2016, 17
  • [33] Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies
    Kim, Doyeong
    Jeong, Seonghun
    Park, Sang-Min
    KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY, 2024, 28 (05) : 403 - 411
  • [34] Single-Cell RNA-Sequencing Reveals the Breadth of Osteoblast Heterogeneity
    Yoshioka, Hirotaka
    Okita, Saki
    Nakano, Masashi
    Minamizaki, Tomoko
    Nubukiyo, Asako
    Sotomaru, Yusuke
    Bonnelye, Edith
    Kozai, Katsuyuki
    Tanimoto, Kotaro
    Aubin, Jane E.
    Yoshiko, Yuji
    JBMR PLUS, 2021, 5 (06)
  • [35] Benchmarking single-cell RNA-sequencing protocols for cell atlas projects
    Mereu, Elisabetta
    Lafzi, Atefeh
    Moutinho, Catia
    Ziegenhain, Christoph
    McCarthy, Davis J.
    Alvarez-Varela, Adrian
    Batlle, Eduard
    Sagar
    Gruen, Dominic
    Lau, Julia K.
    Boutet, Stephane C.
    Sanada, Chad
    Ooi, Aik
    Jones, Robert C.
    Kaihara, Kelly
    Brampton, Chris
    Talaga, Yasha
    Sasagawa, Yohei
    Tanaka, Kaori
    Hayashi, Tetsutaro
    Braeuning, Caroline
    Fischer, Cornelius
    Sauers, Sascha
    Trefzer, Timo
    Conrad, Christian
    Adiconis, Xian
    Nguyen, Lan T.
    Regev, Aviv
    Levin, Joshua Z.
    Parekh, Swati
    Janjic, Aleksandar
    Wange, Lucas E.
    Bagnoli, Johannes W.
    Enard, Wolfgang
    Gut, Marta
    Sandberg, Rickard
    Nikaido, Itoshi
    Gut, Ivo
    Stegle, Oliver
    Heyn, Holger
    NATURE BIOTECHNOLOGY, 2020, 38 (06) : 747 - +
  • [36] Prospects of Identifying Alternative Splicing Events from Single-Cell RNA Sequencing Data
    Wang, Jiacheng
    Yuan, Lei
    CURRENT BIOINFORMATICS, 2024, 19 (09) : 845 - 850
  • [37] How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives
    Dal Molin, Alessandra
    Di Camillo, Barbara
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (04) : 1384 - 1394
  • [38] Characterizing Fibroblast Heterogeneity in Diabetic Wounds Through Single-Cell RNA-Sequencing
    Wang, Helen H.
    Korah, Maria
    Jing, Serena L.
    Berry, Charlotte E.
    Griffin, Michelle F.
    Longaker, Michael T.
    Januszyk, Michael
    BIOMEDICINES, 2024, 12 (11)
  • [39] Integrated Pipelines for Inferring Gene Regulatory Networks from Single-Cell Data
    Chen, Aimin
    Zhou, Tianshou
    Tian, Tianhai
    CURRENT BIOINFORMATICS, 2022, 17 (07) : 559 - 564
  • [40] Splatter: simulation of single-cell RNA sequencing data
    Luke Zappia
    Belinda Phipson
    Alicia Oshlack
    Genome Biology, 18