Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data

被引:126
|
作者
Kim, Jong Kyoung [1 ]
Marioni, John C. [1 ]
机构
[1] European Bioinformat Inst EMBL EBI, Hinxton CB10 1SD, Cambs, England
来源
GENOME BIOLOGY | 2013年 / 14卷 / 01期
关键词
gene regulation; RNA-seq; single-cell; statistics; transcriptional burst; EMBRYONIC STEM-CELLS; SEQ; NOISE; DYNAMICS; STATE;
D O I
10.1186/gb-2013-14-1-r7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genetically identical populations of cells grown in the same environmental condition show substantial variability in gene expression profiles. Although single-cell RNA-seq provides an opportunity to explore this phenomenon, statistical methods need to be developed to interpret the variability of gene expression counts. Results: We develop a statistical framework for studying the kinetics of stochastic gene expression from single-cell RNA-seq data. By applying our model to a single-cell RNA-seq dataset generated by profiling mouse embryonic stem cells, we find that the inferred kinetic parameters are consistent with RNA polymerase II binding and chromatin modifications. Our results suggest that histone modifications affect transcriptional bursting by modulating both burst size and frequency. Furthermore, we show that our model can be used to identify genes with slow promoter kinetics, which are important for probabilistic differentiation of embryonic stem cells. Conclusions: We conclude that the proposed statistical model provides a flexible and efficient way to investigate the kinetics of transcription.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] RESCUE: imputing dropout events in single-cell RNA-sequencing data
    Tracy, Sam
    Yuan, Guo-Cheng
    Dries, Ruben
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [32] RESCUE: imputing dropout events in single-cell RNA-sequencing data
    Sam Tracy
    Guo-Cheng Yuan
    Ruben Dries
    BMC Bioinformatics, 20
  • [33] Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data
    Martin Barron
    Jun Li
    Scientific Reports, 6
  • [34] Inferring microenvironmental regulation of gene expression from single-cell RNA sequencing data using scMLnet with an application to COVID-19
    Cheng, Jinyu
    Zhang, Ji
    Wu, Zhongdao
    Sun, Xiaoqiang
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (02) : 988 - 1005
  • [35] scDEA: differential expression analysis in single-cell RNA-sequencing data via ensemble learning
    Li, Hui-Sheng
    Le Ou-Yang
    Yuan Zhu
    Hong Yan
    Zhang, Xiao-Fei
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [36] LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering
    Specht, Alicia T.
    Li, Jun
    BIOINFORMATICS, 2017, 33 (05) : 764 - 766
  • [37] Combining bulk RNA-sequencing and single-cell RNA-sequencing data to reveal the immune microenvironment and metabolic pattern of osteosarcoma
    Huang, Ruichao
    Wang, Xiaohu
    Yin, Xiangyun
    Zhou, Yaqi
    Sun, Jiansheng
    Yin, Zhongxiu
    Zhu, Zhi
    FRONTIERS IN GENETICS, 2022, 13
  • [38] Inferring single-cell gene expression mechanisms using stochastic simulation
    Daigle, Bernie J., Jr.
    Soltani, Mohammad
    Petzold, Linda R.
    Singh, Abhyudai
    BIOINFORMATICS, 2015, 31 (09) : 1428 - 1435
  • [39] Deep learning for inferring gene relationships from single-cell expression data
    Yuan, Ye
    Bar-Joseph, Ziv
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (52) : 27151 - 27158
  • [40] Quantitative assessment of single-cell RNA-sequencing methods
    Angela R Wu
    Norma F Neff
    Tomer Kalisky
    Piero Dalerba
    Barbara Treutlein
    Michael E Rothenberg
    Francis M Mburu
    Gary L Mantalas
    Sopheak Sim
    Michael F Clarke
    Stephen R Quake
    Nature Methods, 2014, 11 : 41 - 46