Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data

被引:127
|
作者
Kim, Jong Kyoung [1 ]
Marioni, John C. [1 ]
机构
[1] European Bioinformat Inst EMBL EBI, Hinxton CB10 1SD, Cambs, England
来源
GENOME BIOLOGY | 2013年 / 14卷 / 01期
关键词
gene regulation; RNA-seq; single-cell; statistics; transcriptional burst; EMBRYONIC STEM-CELLS; SEQ; NOISE; DYNAMICS; STATE;
D O I
10.1186/gb-2013-14-1-r7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genetically identical populations of cells grown in the same environmental condition show substantial variability in gene expression profiles. Although single-cell RNA-seq provides an opportunity to explore this phenomenon, statistical methods need to be developed to interpret the variability of gene expression counts. Results: We develop a statistical framework for studying the kinetics of stochastic gene expression from single-cell RNA-seq data. By applying our model to a single-cell RNA-seq dataset generated by profiling mouse embryonic stem cells, we find that the inferred kinetic parameters are consistent with RNA polymerase II binding and chromatin modifications. Our results suggest that histone modifications affect transcriptional bursting by modulating both burst size and frequency. Furthermore, we show that our model can be used to identify genes with slow promoter kinetics, which are important for probabilistic differentiation of embryonic stem cells. Conclusions: We conclude that the proposed statistical model provides a flexible and efficient way to investigate the kinetics of transcription.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Jong Kyoung Kim
    John C Marioni
    Genome Biology, 14
  • [2] An Introduction to the Analysis of Single-Cell RNA-Sequencing Data
    AlJanahi, Aisha A.
    Danielsen, Mark
    Dunbar, Cynthia E.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 : 189 - 196
  • [3] Single-Cell RNA-Sequencing in Glioma
    Johnson, Eli
    Dickerson, Katherine L.
    Connolly, Ian D.
    Gephart, Melanie Hayden
    CURRENT ONCOLOGY REPORTS, 2018, 20 (05)
  • [4] Identifying and removing the cellcycle effect from single-cell RNA-Sequencing data
    Barron, Martin
    Li, Jun
    SCIENTIFIC REPORTS, 2016, 6
  • [5] Clustering methods for single-cell RNA-sequencing expression data: performance evaluation with varying sample sizes and cell compositions
    Suner, Asli
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2019, 18 (05)
  • [6] RESCUE: imputing dropout events in single-cell RNA-sequencing data
    Sam Tracy
    Guo-Cheng Yuan
    Ruben Dries
    BMC Bioinformatics, 20
  • [7] RESCUE: imputing dropout events in single-cell RNA-sequencing data
    Tracy, Sam
    Yuan, Guo-Cheng
    Dries, Ruben
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [8] Single-Cell RNA-Sequencing in Glioma
    Eli Johnson
    Katherine L. Dickerson
    Ian D. Connolly
    Melanie Hayden Gephart
    Current Oncology Reports, 2018, 20
  • [9] Single-cell RNA-sequencing: The future of genome biology is now
    Picelli, Simone
    RNA BIOLOGY, 2017, 14 (05) : 637 - 650
  • [10] Transcriptomics and single-cell RNA-sequencing
    Chambers, Daniel C.
    Carew, Alan M.
    Lukowski, Samuel W.
    Powell, Joseph E.
    RESPIROLOGY, 2019, 24 (01) : 29 - 36