Quadratures and integral transforms arising from generating functions

被引:2
作者
Campos, Rafael G. [1 ]
Marcellan, Francisco [2 ,3 ]
机构
[1] Univ Michoacana, Fac Ciencias Fisicomatemat, Morelia 58060, Michoacan, Mexico
[2] Univ Carlos III Madrid, Inst Ciencias Matemat ICMAT, Leganes 28911, Spain
[3] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
关键词
Integral transforms; Quadratures; Orthogonal polynomials; Generating functions; STATES;
D O I
10.1016/j.amc.2016.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the explicit form of the eigenvectors of the finite Jacobi matrix associated to a family of orthogonal polynomials and some asymptotic expressions, we obtain quadrature formulas for the integral transforms arising from linear generating functions of the classical orthogonal polynomials. As a bypass product, we obtain simple and accurate Riemann-Steklov quadrature formulas and as an application of this quadrature formalism, we obtain the relationship between the fractional Fourier transform and the canonical coherent states. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:8 / 18
页数:11
相关论文
共 19 条
[1]  
[Anonymous], 1975, AM MATH SOC C PUBLIC
[2]  
[Anonymous], 2004, ORTHOGONAL POLYNOMIA, DOI DOI 10.1093/OSO/9780198506720.001.0001, Patent No. 220512815
[3]  
Campos R.G., 2016, INVERSE LAPLAC UNPUB
[4]  
Campos R.G., 2014, RECENTTRENDS THEORET, P75
[5]   Time-reversal breaking in fractional differential problems [J].
Campos, Rafael G. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (06)
[6]   FAST INTEGRATION OF ONE-DIMENSIONAL BOUNDARY VALUE PROBLEMS [J].
Campos, Rafael G. ;
Garcia Ruiz, Rafael .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (11)
[7]   A NEW FORMULATION OF THE FAST FRACTIONAL FOURIER TRANSFORM [J].
Campos, Rafael G. ;
Rico-Melgoza, J. ;
Chavez, Edgar .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02) :A1110-A1125
[8]   Quadrature formulas for integrals transforms generated by orthogonal polynomials [J].
Campos, Rafael G. ;
Dominguez Mota, Francisco ;
Coronado, E. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) :1181-1193
[9]  
Chihara T.S., 1978, INTRO ORTHOGONAL POL
[10]   'Nonclassical' states in quantum optics: a 'squeezed' review of the first 75 years [J].
Dodonov, VV .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2002, 4 (01) :R1-R33