Star complements and connectivity in finite graphs

被引:3
作者
Rowlinson, Peter [1 ]
机构
[1] Univ Stirling, Inst Comp Sci & Math, Math & Stat Grp, Stirling FK9 4LA, Scotland
关键词
Graph; Connectivity; Eigenvalue; Star complement;
D O I
10.1016/j.laa.2013.06.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite graph with H as a star complement for an eigenvalue other than 0 or -1. Let kappa(G), delta(G) denote respectively the vertex-connectivity and minimum degree of G. We prove that kappa(G) is controlled by delta(G) and kappa(H). In particular, for each k is an element of N there exists a smallest non-negative integer f(k) such that kappa(G) >= k whenever kappa(H) >= k and delta(G) >= f(k). We show that f (1) = 0, f (2) = 2, f (3) = 3, f (4) = 5 and f (5) = 7. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:92 / 98
页数:7
相关论文
共 11 条
[1]   On the multiplicities of graph eigenvalues [J].
Bell, FK ;
Rowlinson, P .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :401-408
[2]   A TABLE OF CONNECTED GRAPHS ON 6 VERTICES [J].
CVETKOVIC, D ;
PETRIC, M .
DISCRETE MATHEMATICS, 1984, 50 (01) :37-49
[3]  
Cvetkovic D., 1996, SPECTRA GRAPHS
[4]  
Cvetkovic D, 2010, An Introduction to the Theory of Graph Spectra
[5]  
CVETKOVIC D, 1981, U BEOGRAD PUBL EL MF, V716, P100
[6]  
Cvetkovic D., 2004, Spectral Generalizations of Line Graphs. On Graphs with Least Eigenvalue -2
[7]  
Cvetkovic D.M., 1988, RECENT RESULTS THEOR
[8]  
Rowlinson P., 2004, Publ. Inst. Math. (Belgr.), V76, P25
[9]  
ROWLINSON P, 2000, DIMACS SERIES DISCRE, V51, P323
[10]  
ROWLINSON P., 2001, REND SEM MAT MESSI 2, V8, P145