Chaos control in the fractional-order Lorenz system with Random Parameter

被引:4
|
作者
Qiao, Wei [1 ]
机构
[1] Ningxia Coalfield Geol Bur, Inst Mine Andgeol Disaster Management, Ningxia, Peoples R China
来源
ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING, PTS 1-3 | 2013年 / 278-280卷
关键词
random parameter; fractional-order; Chebyshev polynomial; Linear feedback method; Chaos control;
D O I
10.4028/www.scientific.net/AMM.278-280.1423
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the chaos control in the fractional-order Lorenz system with random parameter. Firstly, according to orthogonal polynomial approximation principle of the Functional analysis, the fractional-order Lorenz system with random parameter is reduced to its equivalent deterministic one. Secondly, chaos control equivalent deterministic system research using the linear feedback method. Finally, though numerical results show the effective and feasible of this method.
引用
收藏
页码:1423 / 1426
页数:4
相关论文
共 50 条
  • [21] Study on the Inherent Complex Features and Chaos Control of IS-LM Fractional-Order Systems
    Ma, Junhai
    Ren, Wenbo
    Zhan, Xueli
    ENTROPY, 2016, 18 (09):
  • [22] A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system
    王震
    黄霞
    李玉霞
    宋晓娜
    Chinese Physics B, 2013, 22 (01) : 124 - 130
  • [23] The Synchronization of Three Fractional-Order Lorenz Chaotic Systems
    Yu, Yong-Guang
    Wen, Guo-Guang
    Li, Han-Xiong
    Diao, Miao
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (03) : 379 - 386
  • [24] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
    Danca, Marius-F
    Tang, Wallace K. S.
    CHINESE PHYSICS B, 2016, 25 (01)
  • [25] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
    Marius-F Danca
    Wallace K S Tang
    Chinese Physics B, 2016, (01) : 511 - 517
  • [26] Mittag–Leffler stability of fractional-order Lorenz and Lorenz-family systems
    Ke Yunquan
    Miao Chunfang
    Nonlinear Dynamics, 2016, 83 : 1237 - 1246
  • [27] Chaos synchronization of fractional-order differential systems
    Li, CP
    Deng, WH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (07): : 791 - 803
  • [28] Chaos in the fractional-order conjugate Chen system and its circuit emulation
    Zhang Ruo-Xun
    Yang Shi-Ping
    ACTA PHYSICA SINICA, 2009, 58 (05) : 2957 - 2962
  • [29] Fractional-order Fixed-time Nonsingular Backstepping Control of an Incommensurate Fractional-order Ferroresonance System
    Li, Xiaoteng
    Wang, Yan
    Liu, Ling
    Liu, Chongxin
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 818 - 823
  • [30] Chaos and hyperchaos in the fractional-order Rossler equations
    Li, CG
    Chen, GR
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 55 - 61