Impact of nanocrystallinity segregation on the growth and morphology of nanocrystal superlattices

被引:10
|
作者
Wan, Yanfen [1 ,2 ]
Portales, Herve [1 ,2 ]
Goubet, Nicolas [1 ,2 ]
Mermet, Alain [3 ]
Pileni, Marie-Paule [1 ,2 ]
机构
[1] Univ Paris 06, UMR 7070, LM2N, F-75005 Paris, France
[2] CNRS, UMR 7070, LM2N, F-75005 Paris, France
[3] Univ Lyon 1, CNRS, Inst Lumiere Mat, UMR 5306, F-69622 Villeurbanne, France
基金
欧洲研究理事会;
关键词
supracrystals; close-packed self-assembly; metal nanoparticles; Raman scattering spectroscopy; NANOPARTICLE SUPERLATTICES; PHYSICAL-PROPERTIES; COLLOIDAL CRYSTALS; GOLD; SUPRACRYSTALS; DEPENDENCE; PARTICLES;
D O I
10.1007/s12274-013-0337-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A colloidal solution of 5 nm Au tetradecanethiol-coated nanoparticles is synthesized. After fast evaporation of one drop, ordered monolayers both composed of single domain and polycrystalline nanocrystals are obtained. On increasing the amount of materials and the evaporation time, nanocrystal films with irregular outlines are produced together with close-packed 3D superlattices exhibiting a truncated-tetrahedral shape. Using low-frequency micro-Raman scattering spectroscopy and electron microscopy the building block nanocrystallinity is characterized. Spontaneous nanocrystallinity segregation is revealed: the truncated-tetrahedral supracrystals are shown to mainly contain single domain building blocks while the supracrystalline films are composed of a mixture of single domain and polycrystalline nanocrystals. This observation points out the correlation between the nanocrystallinity segregation involved in the growth of the nanocrystal superlattices and their morphology.
引用
收藏
页码:611 / 618
页数:8
相关论文
共 50 条
  • [1] Impact of nanocrystallinity segregation on the growth and morphology of nanocrystal superlattices
    Yanfen Wan
    Hervé Portalès
    Nicolas Goubet
    Alain Mermet
    Marie-Paule Pileni
    Nano Research, 2013, 6 : 611 - 618
  • [2] Au nanocrystal superlattices: nanocrystallinity, vicinal surfaces, and growth processes
    Smilgies, Detlef-M
    Li, Ruipeng
    Pileni, Marie Paule
    NANOSCALE, 2018, 10 (32) : 15371 - 15378
  • [3] Growth of Nanocrystal Superlattices from Liquid Crystals
    Yang, Shengsong
    Ning, Yifan
    Zhang, Yugang
    Murray, Christopher B.
    Journal of the American Chemical Society, 2024,
  • [4] Growth of Nanocrystal Superlattices from Liquid Crystals
    Yang, Shengsong
    Ning, Yifan
    Zhang, Yugang
    Murray, Christopher B.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (16) : 11043 - 11047
  • [5] Nanocrystal superlattices
    Collier, CP
    Vossmeyer, T
    Heath, JR
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1998, 49 : 371 - 404
  • [6] Silicon Nanocrystal Superlattices
    Yu, Yixuan
    Bosoy, Christian A.
    Hessel, Colin M.
    Smilgies, Detlef-M.
    Korgel, Brian A.
    CHEMPHYSCHEM, 2013, 14 (01) : 84 - 87
  • [7] Doped nanocrystal superlattices
    Angang Dong
    Science Bulletin, 2015, 60 (22) : 1964 - 1965
  • [8] Doped nanocrystal superlattices
    Dong, Angang
    SCIENCE BULLETIN, 2015, 60 (22) : 1964 - 1965
  • [9] The impact of diamond nanocrystallinity on osteoblast functions
    Yang, Lei
    Sheldon, Brian W.
    Webster, Thomas J.
    BIOMATERIALS, 2009, 30 (20) : 3458 - 3465
  • [10] Substitutional doping in nanocrystal superlattices
    Matteo Cargnello
    Aaron C. Johnston-Peck
    Benjamin T. Diroll
    Eric Wong
    Bianca Datta
    Divij Damodhar
    Vicky V. T. Doan-Nguyen
    Andrew A. Herzing
    Cherie R. Kagan
    Christopher B. Murray
    Nature, 2015, 524 : 450 - 453