Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications

被引:122
作者
Zhao, Shuoqing [1 ,2 ]
Liu, Tianmo [1 ,2 ]
Hou, Dewen [1 ,2 ]
Zeng, Wen [1 ,2 ]
Miao, Bin [1 ,2 ]
Hussain, Shahid [1 ,2 ]
Peng, Xianghe [1 ,2 ]
Javed, Muhammad Sufyan [3 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400030, Peoples R China
[2] Chongqing Univ, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400030, Peoples R China
[3] Chongqing Univ, Dept Appl Phys, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrothermal; Supercapacitor; Birnessite-type MnO2; Nanoflower; Specific capacitance; HIGH-PERFORMANCE; HYDROTHERMAL SYNTHESIS; ELECTRODE MATERIALS; THIN-FILMS; NANOSTRUCTURES; NANOSHEETS; DESIGN; ARRAYS; OXIDE;
D O I
10.1016/j.apsusc.2015.08.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Birnessite-type MnO2 nanoflowers assembled by hierarchical nanosheets were successfully synthesized via a facile and simple hydrothermal process. The ration of reactants is a critical factor affects formation process of MnO2 nanoflowers. The electrochemical test of the as-synthesized birnessite-type MnO2 exhibits excellent electrochemical property with ideal voltammetry behavior, high specific capacitance (197.3 F g(-1) at 1 A g(-1)) and superior cycling stability (only 5.4% capacitance loss after 1000 cycling test). The distinct hierarchical nanostructure and impressive electrochemical performances suggest the birnessite-type MnO2 is a promising material for supercapacitor applications. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 31 条
[1]   Controllable Synthesis of Hollow Bipyramid β-MnO2 and Its High Electrochemical Performance for Lithium Storage [J].
Chen, Wei-Min ;
Qie, Long ;
Shao, Qing-Guo ;
Yuan, Li-Xia ;
Zhang, Wu-Xing ;
Huang, Yun-Hui .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (06) :3047-3053
[2]   Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J].
Hu, Chi-Chang ;
Chang, Kuo-Hsin ;
Lin, Ming-Champ ;
Wu, Yung-Tai .
NANO LETTERS, 2006, 6 (12) :2690-2695
[3]   Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes [J].
Huang, Ming ;
Zhao, Xiao Li ;
Li, Fei ;
Zhang, Li Li ;
Zhang, Yu Xin .
JOURNAL OF POWER SOURCES, 2015, 277 :36-43
[4]   Preparation of cobalt oxide thin films and its use in supercapacitor application [J].
Kandalkar, S. G. ;
Gunjakar, J. L. ;
Lokhande, C. D. .
APPLIED SURFACE SCIENCE, 2008, 254 (17) :5540-5544
[5]   Principles and applications of electrochemical capacitors [J].
Kötz, R ;
Carlen, M .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2483-2498
[6]   Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode [J].
Li, Songzhan ;
Wen, Jian ;
Mo, Xiaoming ;
Long, Hao ;
Wang, Haoning ;
Wang, Jianbo ;
Fang, Guojia .
JOURNAL OF POWER SOURCES, 2014, 256 :206-211
[7]   Advanced Materials for Energy Storage [J].
Liu, Chang ;
Li, Feng ;
Ma, Lai-Peng ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2010, 22 (08) :E28-+
[8]   Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes [J].
Liu, Mingxian ;
Gan, Lihua ;
Xiong, Wei ;
Xu, Zijie ;
Zhu, Dazhang ;
Chen, Longwu .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (08) :2555-2562
[9]   WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors [J].
Lu, Xihong ;
Zhai, Teng ;
Zhang, Xianghui ;
Shen, Yongqi ;
Yuan, Longyan ;
Hu, Bin ;
Gong, Li ;
Chen, Jian ;
Gao, Yihua ;
Zhou, Jun ;
Tong, Yexiang ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2012, 24 (07) :938-+
[10]   Hierarchical TiO2 nanobelts@MnO2 ultrathin nanoflakes core-shell array electrode materials for supercapacitors [J].
Luo, Yongsong ;
Kong, Dezhi ;
Luo, Jingshan ;
Chen, Shi ;
Zhang, Deyang ;
Qiu, Kangwen ;
Qi, Xiaoying ;
Zhang, Hua ;
Li, Chang Ming ;
Yu, Ting .
RSC ADVANCES, 2013, 3 (34) :14413-14422