Data augmentation for univariate time series forecasting with neural networks

被引:49
作者
Semenoglou, Artemios-Anargyros [1 ]
Spiliotis, Evangelos [1 ]
Assimakopoulos, Vassilios [1 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Forecasting & Strategy Unit, Athens, Greece
关键词
Time series; Forecasting; Data augmentation; Neural networks; M4; competition; DECOMPOSITION; COMPETITION; MODEL;
D O I
10.1016/j.patcog.2022.109132
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural networks have been proven particularly accurate in univariate time series forecasting settings, re-quiring however a significant number of training samples to be effectively trained. In machine learning applications where available data are limited, data augmentation techniques have been successfully used to generate synthetic data that resemble and complement the original train set. Since the potential of data augmentation has been largely neglected in univariate time series forecasting, in this study we in-vestigate nine data augmentation techniques, ranging from simple transformations and adjustments to sophisticated generative models and a novel upsampling approach. We empirically evaluate the impact of data augmentation on forecasting accuracy considering both shallow and deep feed-forward neural networks and time series data sets of different sizes from the M4 and the Tourism competitions. Our results suggest that certain data augmentation techniques that build on upsampling and time series com-binations can improve forecasting performance, especially when deep networks are used. However, these improvements become less significant as the initial size of the train set increases. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 40 条
[1]   The theta model: a decomposition approach to forecasting [J].
Assimakopoulos, V ;
Nikolopoulos, K .
INTERNATIONAL JOURNAL OF FORECASTING, 2000, 16 (04) :521-530
[2]   The tourism forecasting competition [J].
Athanasopoulos, George ;
Hyndman, Rob J. ;
Song, Haiyan ;
Wu, Doris C. .
INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (03) :822-844
[3]   Improving the accuracy of global forecasting models using time series data augmentation [J].
Bandara, Kasun ;
Hewamalage, Hansika ;
Liu, Yuan-Hao ;
Kang, Yanfei ;
Bergmeir, Christoph .
PATTERN RECOGNITION, 2021, 120
[4]   Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation [J].
Bergmeir, Christoph ;
Hyndman, Rob J. ;
Benitez, Jose M. .
INTERNATIONAL JOURNAL OF FORECASTING, 2016, 32 (02) :303-312
[5]   Hyperopt: A Python library for model selection and hyperparameter optimization [J].
Bergstra, James ;
Komer, Brent ;
Eliasmith, Chris ;
Yamins, Dan ;
Cox, David D .
Computational Science and Discovery, 2015, 8 (01)
[6]   A Parsimonious Mixture of Gaussian Trees Model for Oversampling in Imbalanced and Multimodal Time-Series Classification [J].
Cao, Hong ;
Tan, Vincent Y. F. ;
Pang, John Z. F. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (12) :2226-2239
[7]   Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction [J].
Crone, Sven F. ;
Hibon, Michele ;
Nikolopoulos, Konstantinos .
INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (03) :635-660
[8]   25 years of time series forecasting [J].
De Gooijer, Jan G. ;
Hyndman, Rob J. .
INTERNATIONAL JOURNAL OF FORECASTING, 2006, 22 (03) :443-473
[9]  
Feng SY, 2021, Arxiv, DOI arXiv:2105.03075
[10]   Generating synthetic time series to augment sparse datasets [J].
Forestier, Germain ;
Petitjean, Francois ;
Dau, Hoang Anh ;
Webb, Geoffrey I. ;
Keogh, Eamonn .
2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, :865-870