Non-parametric copulas for circular-linear and circular-circular data: an application to wind directions

被引:34
|
作者
Carnicero, Jose A. [1 ]
Concepcion Ausin, M. [2 ]
Wiper, Michael P. [2 ]
机构
[1] Hosp Virgen del Valle, Secc Geriatria, Toledo, Spain
[2] Univ Carlos III Madrid, Dept Estadist, E-28903 Getafe, Spain
关键词
Bernstein polynomials; Circular distributions; Circular-circular data; Circular-linear data; Copulas; Non-parametric estimation; MODELS; DISTRIBUTIONS;
D O I
10.1007/s00477-013-0733-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes a nonparametric approach to estimating the dependence relationships between circular variables and other circular or linear variables using copulas. The proposed method is based on the use of Bernstein copulas which are a very flexible class of non-parametric copulas which allows for the approximation of any kind of dependence structure, including non symmetric relationships. In particular, we present a simple procedure to adapt Bernstein copulas to the circular framework and guarantee that the constructed bivariate distributions are strictly continuous. We provide two illustrative case studies, the first on the relation between wind direction and quantity of rainfall in the North of Spain and the second on the dependence between the wind directions in two nearby buoys at the Atlantic ocean.
引用
收藏
页码:1991 / 2002
页数:12
相关论文
共 27 条
  • [1] Non-parametric copulas for circular–linear and circular–circular data: an application to wind directions
    Jose A. Carnicero
    M. Concepción Ausín
    Michael P. Wiper
    Stochastic Environmental Research and Risk Assessment, 2013, 27 : 1991 - 2002
  • [2] Models for circular-linear and circular-circular data constructed from circular distributions based on nonnegative trigonometric sums
    Fernandez-Duran, J. J.
    BIOMETRICS, 2007, 63 (02) : 579 - 585
  • [3] Test of bivariate independence based on angular probability integral transform with emphasis on circular-circular and circular-linear data
    Fernandez-Duran, Juan Jose
    Gregorio-Dominguez, Maria Mercedes
    DEPENDENCE MODELING, 2023, 11 (01):
  • [4] Non-parametric Regression for Circular Responses
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 238 - 255
  • [5] Inverse Circular-Linear/Linear-Circular Regression
    Kim, Sungsu
    Sengupta, Ashis
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (22) : 4772 - 4782
  • [6] Circular-linear copulae for animal movement data
    Hodel, Florian H.
    Fieberg, John R.
    METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (05): : 1001 - 1013
  • [7] Exploring wind direction and SO2 concentration by circular-linear density estimation
    Garcia-Portugues, E.
    Crujeiras, R. M.
    Gonzalez-Manteiga, W.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (05) : 1055 - 1067
  • [8] JCLMM: A finite mixture model for clustering of circular-linear data and its application to psoriatic plaque segmentation
    Roy, Anandarup
    Pal, Anabik
    Garain, Utpal
    PATTERN RECOGNITION, 2017, 66 : 160 - 173
  • [9] Improving kernel-based nonparametric regression for circular-linear data
    Tsuruta, Yasuhito
    Sagae, Masahiko
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2022, 5 (01) : 111 - 131
  • [10] A dependent circular-linear model for multivariate biomechanical data: Ilizarov ring fixator study
    Nagar, Priyanka
    Bekker, Andriette
    Arashi, Mohammad
    Kat, Cor-Jacques
    Barnard, Annette-Christi
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2024, 33 (09) : 1660 - 1672