The extrusion-based 3D printing method is one of the main additive manufacturing techniques worldwide in construction industry. This method is capable to produce large scale components with complex geometries without the use of an expensive formwork. The main advantages of this technique are encountered by the fact that the end result is a layered structure. Within these elements, voids can form between the filaments and also the time gap between the different layers will be of great importance. These factors will not only affect the mechanical performance but will also have an influence on the durability of the components. In this research, a custom-made 3D printing apparatus was used to simulate the printing process. Layered specimens with 0, 10 and 60 min delay time (i.e. the time between printing of subsequent layers) have been printed with two different printing speeds (1.7 cm/s and 3 cm/s). Mechanical properties including compressive and inter-layer bonding strength have been measured and the effect on the pore size and pore size distribution was taken into account by performing Mercury Intrusion Porosimetry (MIP) tests. First results showed that the mechanical performance of high speed printed specimens is lower for every time gap due to a decreased surface roughness and the formation of bigger voids. The porosity of the elements shows an increasing trend when enlarging the time gap and a higher printing speed will create bigger voids and pores inside the printed material.
机构:
Univ Southern Calif, Sonny Astani Dept Civil & Environm Engn, Kaprielian Hall,3620 S Vermont Ave 225, Los Angeles, CA 90089 USAUniv Southern Calif, Sonny Astani Dept Civil & Environm Engn, Kaprielian Hall,3620 S Vermont Ave 225, Los Angeles, CA 90089 USA
Zareiyan, Babak
;
Khoshnevis, Behrokh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Daniel J Epstein Dept Ind & Syst Engn, Los Angeles, CA USAUniv Southern Calif, Sonny Astani Dept Civil & Environm Engn, Kaprielian Hall,3620 S Vermont Ave 225, Los Angeles, CA 90089 USA
机构:
Univ Southern Calif, Sonny Astani Dept Civil & Environm Engn, Kaprielian Hall,3620 S Vermont Ave 210, Los Angeles, CA 90089 USAUniv Southern Calif, Sonny Astani Dept Civil & Environm Engn, Kaprielian Hall,3620 S Vermont Ave 210, Los Angeles, CA 90089 USA
Zareiyan, Babak
;
Khoshnevis, Behrokh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Daniel J Epstein Dept Ind & Syst Engn, Los Angeles, CA 90089 USAUniv Southern Calif, Sonny Astani Dept Civil & Environm Engn, Kaprielian Hall,3620 S Vermont Ave 210, Los Angeles, CA 90089 USA
机构:
Univ Southern Calif, Sonny Astani Dept Civil & Environm Engn, Kaprielian Hall,3620 S Vermont Ave 225, Los Angeles, CA 90089 USAUniv Southern Calif, Sonny Astani Dept Civil & Environm Engn, Kaprielian Hall,3620 S Vermont Ave 225, Los Angeles, CA 90089 USA
Zareiyan, Babak
;
Khoshnevis, Behrokh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Daniel J Epstein Dept Ind & Syst Engn, Los Angeles, CA USAUniv Southern Calif, Sonny Astani Dept Civil & Environm Engn, Kaprielian Hall,3620 S Vermont Ave 225, Los Angeles, CA 90089 USA
机构:
Univ Southern Calif, Sonny Astani Dept Civil & Environm Engn, Kaprielian Hall,3620 S Vermont Ave 210, Los Angeles, CA 90089 USAUniv Southern Calif, Sonny Astani Dept Civil & Environm Engn, Kaprielian Hall,3620 S Vermont Ave 210, Los Angeles, CA 90089 USA
Zareiyan, Babak
;
Khoshnevis, Behrokh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Daniel J Epstein Dept Ind & Syst Engn, Los Angeles, CA 90089 USAUniv Southern Calif, Sonny Astani Dept Civil & Environm Engn, Kaprielian Hall,3620 S Vermont Ave 210, Los Angeles, CA 90089 USA