Basic Reproduction Ratios for Almost Periodic Compartmental Epidemic Models

被引:38
作者
Wang, Bin-Guo [1 ]
Zhao, Xiao-Qiang [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Almost periodicity; Compartmental models; Reproduction ratio; Skew-product semiflow; Threshold dynamics; VECTOR-BORNE DISEASES; THRESHOLD; DYNAMICS; NUMBER;
D O I
10.1007/s10884-013-9304-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theory of the basic reproduction ratio and its computation formulae for almost periodic compartmental epidemic models are established. It is shown that the disease-free almost periodic solution is stable if , and unstable if . We also apply the developed theory to a patchy model with almost periodic population dispersal and disease transmission coefficients to obtain a threshold type result for uniform persistence and global extinction of the disease.
引用
收藏
页码:535 / 562
页数:28
相关论文
共 27 条
[1]   Seasonality and the dynamics of infectious diseases [J].
Altizer, S ;
Dobson, A ;
Hosseini, P ;
Hudson, P ;
Pascual, M ;
Rohani, P .
ECOLOGY LETTERS, 2006, 9 (04) :467-484
[2]  
[Anonymous], 1995, THEORY CHEMOSTAT DYN
[3]   Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population [J].
Bacaer, Nicolas .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (03) :1067-1091
[4]   The epidemic threshold of vector-borne diseases with seasonality [J].
Bacaer, Nicolas ;
Guernaoui, Souad .
JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (03) :421-436
[5]   On the basic reproduction number in a random environment [J].
Bacaer, Nicolas ;
Khaladi, Mohamed .
JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 67 (6-7) :1729-1739
[6]   Modeling pulse infectious events irrupting into a controlled context: A SIS disease with almost periodic parameters [J].
Cordova-Lepe, Fernando ;
Robledo, Gonzalo ;
Pinto, Manuel ;
Gonzalez-Olivares, Eduardo .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (03) :1323-1337
[7]  
Corduneanu C., 1989, Almost Periodic Functions
[8]  
DIEKMANN O, 1990, J MATH BIOL, V28, P365
[9]  
Engel K.-J., 1999, One-parameter semigroups for linear evolution equations, V194