共 49 条
- [41] Approximation of signals (functions) belonging to certain Lipschitz classes by almost Riesz means of its Fourier series Journal of Inequalities and Applications, 2016
- [42] AN EXTENSION THEOREM ON DEGREE OF APPROXIMATION OF FOURIER SERIES BY (E, q)B-MEAN TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (04): : 1093 - 1099
- [43] Degree of approximation of functions belonging to Lip(ω(t),p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Lip(\omega (t),p)$$\end{document}-class by linear operators based on Fourier series Bollettino dell'Unione Matematica Italiana, 2016, 9 (4) : 495 - 504
- [44] On approximation of signals belonging to some classes by (N,pm,qm)(E,θ)(E,θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N,p_m,q_m)(E,\theta )(E,\theta )$$\end{document} means of conjugate series of its Fourier series The Journal of Analysis, 2023, 31 (1) : 501 - 518
- [45] On trigonometric approximation of W(Lp, ξ(t)) (p ≥ 1) function by product (C, 1)(E, 1) means of its Fourier series JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
- [46] On trigonometric approximation of W(Lp,ξ(t)) (p≥1) function by product (C,1)(E,1) means of its Fourier series Journal of Inequalities and Applications, 2013
- [47] Degree of Approximation by the T.E1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {T.\,E^{\,1} } \right) $$\end{document} Means of Conjugate Series of Fourier Series in the Hölder Metric Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 (4): : 1591 - 1599
- [48] Degree of Approximation of Functions, Conjugate to the Functions Belonging to Lip((ξ1,ξ2);p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Lip((\xi _1,\xi _2); p)$$\end{document}-Class Through Double Matrix Means National Academy Science Letters, 2024, 47 (1) : 97 - 101
- [49] Approximation of f~,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{f},$$\end{document} conjugate function of f belonging to a subclass of Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-space, by product means of conjugate Fourier series The Journal of Analysis, 2020, 28 (1) : 155 - 167