Cylindrically shaped ultrasonic linear array fabricated using PIMNT/epoxy 1-3 piezoelectric composite

被引:40
作者
Wang, Wei [1 ,2 ,3 ]
Or, Siu Wing [2 ]
Yue, Qingwen [1 ,3 ]
Zhang, Yaoyao [1 ,3 ]
Jiao, Jie [1 ,3 ]
Ren, Bo [1 ]
Lin, Di [1 ]
Leung, Chung Ming [2 ]
Zhao, Xiangyong [1 ]
Luo, Haosu [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, Key Lab Inorgan Funct Mat & Device, Shanghai 201800, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
关键词
PIMNT single crystal; 1-3 piezoelectric composite; Ultrasonic linear array; PT SINGLE-CRYSTAL; TRANSDUCER; PERFORMANCE; DESIGN;
D O I
10.1016/j.sna.2012.12.020
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to improve the flexibility of Pb(In1/2Nb1/2)O-3-Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PIMNT) single crystal and make full use of the ultrahigh piezoelectric property in focused ultrasonic transducers, PIMNT/epoxy 1-3 composite with a volume fraction of 60% was prepared by a modified dice-and-fill method. Excellent properties for ultrasonic transducer applications have been achieved, such as higher thickness electromechanical coupling coefficient (k(t) = 84%), lower acoustic impedance (Z = 19 MRayls), and moderate dielectric constant (epsilon(T)(33)/epsilon(0) = 2040). Based on the improved flexibility of as-prepared PIMNT/epoxy 1-3 composite, a cylindrically shaped ultrasonic linear array has been designed, fabricated, and characterized. The cylindrically shaped ultrasonic linear array has achieved an ultra-broad bandwidth (-6 dB) of 128%, which is a significant improvement over the plane linear array. These promising results show that the PIMNT/epoxy 1-3 composite can be used to develop high-performance focused ultrasonic transducers. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 75
页数:7
相关论文
共 32 条
  • [1] *ANSI IEEE, 1761987 ANSIIEEE
  • [2] Demonstration of Second-Harmonic IVUS Feasibility with Focused Broadband Miniature Transducers
    Chandrana, Chaitanya
    Kharin, Nikolay
    Vince, Geoffrey D.
    Roy, Shuvo
    Fleischman, Aaron J.
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2010, 57 (05) : 1077 - 1085
  • [3] High-frequency PIN-PMN-PT single crystal ultrasonic transducer for imaging applications
    Chen, Y.
    Lam, K. H.
    Zhou, D.
    Cheng, W. F.
    Dai, J. Y.
    Luo, H. S.
    Chan, H. L. W.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 108 (04): : 987 - 991
  • [4] Performance enhancement of a piezoelectric linear array transducer by half-concave geometric design
    Cheung, K. F.
    Zhou, D.
    Lam, K. H.
    Chen, Y.
    Dai, J. Y.
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2011, 172 (02) : 511 - 515
  • [5] Broadband Poly(vinylidene fluoride-trifluoroethylene) Ultrasound Focusing Transducers for Determining Elastic Constants of Coating Materials
    Chung, Cheng-Hsien
    Lee, Yung-Chun
    [J]. JOURNAL OF NONDESTRUCTIVE EVALUATION, 2009, 28 (3-4) : 101 - 110
  • [6] The performance of 1-3 piezoelectric composites with a porous non-piezoelectric matrix
    Della, Christian N.
    Shu, Dongwei
    [J]. ACTA MATERIALIA, 2008, 56 (04) : 754 - 761
  • [7] DESIGN OF EFFICIENT BROAD-BAND PIEZOELECTRIC TRANSDUCERS
    DESILETS, CS
    FRASER, JD
    KINO, GS
    [J]. IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1978, 25 (03): : 115 - 125
  • [8] Erikson K., 1982, J ULTRAS MED, V1, P1
  • [9] PIEZOELECTRIC CERAMICS AND ULTRASONIC TRANSDUCERS
    GALLEGOJUAREZ, JA
    [J]. JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1989, 22 (10): : 804 - 816
  • [10] Ultrasound focusing using magnetic resonance acoustic radiation force imaging: Application to ultrasound transcranial therapy
    Hertzberg, Y.
    Volovick, A.
    Zur, Y.
    Medan, Y.
    Vitek, S.
    Navon, G.
    [J]. MEDICAL PHYSICS, 2010, 37 (06) : 2934 - 2942