Complete separability of time-dependent second-order ordinary differential equations

被引:12
作者
Cantrijn, F
Sarlet, W
Vandecasteele, A
Martinez, E
机构
[1] STATE UNIV GHENT,THEORET MECH DIV,B-9000 GHENT,BELGIUM
[2] UNIV ZARAGOZA,DEPT MATEMAT APLICADA,E-50009 ZARAGOZA,SPAIN
关键词
separability; time-dependent second-order equations; derivations; forms along a map;
D O I
10.1007/BF01064171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Extending previous work on the geometric characterization of separability in the autonomous case, necessary and sufficient conditions are established for the complete separability of a system of time-dependent second-order ordinary differential equations. In deriving this result, extensive use is made of the theory of derivations of scalar and vector-valued forms along the projection pi: J(1) E --> E of the first jet bundle of a fibre bundle E --> R. Two illustrative examples are discussed, which fully demonstrate all aspects of the constructive nature of the theory.
引用
收藏
页码:309 / 334
页数:26
相关论文
共 14 条
[11]  
Martinez E, 1992, DIFFER GEOM APPL, V2, P17
[12]   DERIVATIONS OF FORMS ALONG A MAP - THE FRAMEWORK FOR TIME-DEPENDENT 2ND-ORDER EQUATIONS [J].
SARLET, W ;
VANDECASTEELE, A ;
CANTRIJN, F ;
MARTINEZ, E .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1995, 5 (02) :171-203
[13]  
Sarlet W., 1994, J NONLINEAR MATH PHY, V1, P5, DOI [10.2991/jnmp.1994.1.1.1, DOI 10.2991/JNMP.1994.1.1.1]
[14]  
Saunders D.J, 1989, LONDON MATH SOC LECT, V142, DOI DOI 10.1017/CBO9780511526411