Complete separability of time-dependent second-order ordinary differential equations

被引:12
作者
Cantrijn, F
Sarlet, W
Vandecasteele, A
Martinez, E
机构
[1] STATE UNIV GHENT,THEORET MECH DIV,B-9000 GHENT,BELGIUM
[2] UNIV ZARAGOZA,DEPT MATEMAT APLICADA,E-50009 ZARAGOZA,SPAIN
关键词
separability; time-dependent second-order equations; derivations; forms along a map;
D O I
10.1007/BF01064171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Extending previous work on the geometric characterization of separability in the autonomous case, necessary and sufficient conditions are established for the complete separability of a system of time-dependent second-order ordinary differential equations. In deriving this result, extensive use is made of the theory of derivations of scalar and vector-valued forms along the projection pi: J(1) E --> E of the first jet bundle of a fibre bundle E --> R. Two illustrative examples are discussed, which fully demonstrate all aspects of the constructive nature of the theory.
引用
收藏
页码:309 / 334
页数:26
相关论文
共 14 条
[1]  
BENENTI S, 1991, PROG MATH, V99, P1
[2]   A GEOMETRICAL VERSION OF THE HELMHOLTZ CONDITIONS IN TIME-DEPENDENT LAGRANGIAN DYNAMICS [J].
CRAMPIN, M ;
PRINCE, GE ;
THOMPSON, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07) :1437-1447
[3]  
de Leon M., 1989, MATH STUDIES, V158
[4]   NONAUTONOMOUS SUBMERSIVE 2ND-ORDER DIFFERENTIAL-EQUATIONS AND LIE SYMMETRIES [J].
DELEON, M ;
DEDIEGO, DM .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1994, 33 (08) :1759-1781
[5]   A SEPARABILITY THEOREM FOR DYNAMIC-SYSTEMS ADMITTING ALTERNATIVE LAGRANGIAN DESCRIPTIONS [J].
FERRARIO, C ;
LOVECCHIO, G ;
MARMO, G ;
MORANDI, G ;
RUBANO, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (11) :3225-3236
[6]  
Frlicher A., 1956, PROC KOND NED AKAD, V18, P338
[7]  
KALNINS EG, 1986, PITMAN MONOGRAPHS PU, V28
[8]   SUBMERSIVE 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
KOSSOWSKI, M ;
THOMPSON, G .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 110 :207-224
[9]   GEOMETRIC CHARACTERIZATION OF SEPARABLE 2ND-ORDER DIFFERENTIAL-EQUATIONS [J].
MARTINEZ, E ;
CARINENA, JF ;
SARLET, W .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 113 :205-224
[10]   DERIVATIONS OF DIFFERENTIAL FORMS ALONG THE TANGENT BUNDLE PROJECTION-II [J].
MARTINEZ, E ;
CARINENA, JF ;
SARLET, W .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1993, 3 (01) :1-29