SHRINKAGE AND PENALTY ESTIMATORS OF A POISSON REGRESSION MODEL

被引:19
作者
Hossain, Shakhawat [1 ]
Ahmed, Ejaz [2 ]
机构
[1] Univ Winnipeg, Dept Math & Stat, Winnipeg, MB R3B 2E9, Canada
[2] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
asymptotic distributional bias and risk; likelihood ratio test; Monte Carlo simulation; penalty estimators; Poisson regression; shrinkage estimators; ADAPTIVE LASSO; SELECTION; LIKELIHOOD;
D O I
10.1111/j.1467-842X.2012.00679.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we propose Stein-type shrinkage estimators for the parameter vector of a Poisson regression model when it is suspected that some of the parameters may be restricted to a subspace. We develop the properties of these estimators using the notion of asymptotic distributional risk. The shrinkage estimators are shown to have higher efficiency than the classical estimators for a wide class of models. Furthermore, we consider three different penalty estimators: the LASSO, adaptive LASSO, and SCAD estimators and compare their relative performance with that of the shrinkage estimators. Monte Carlo simulation studies reveal that the shrinkage strategy compares favorably to the use of penalty estimators, in terms of relative mean squared error, when the number of inactive predictors in the model is moderate to large. The shrinkage and penalty strategies are applied to two real data sets to illustrate the usefulness of the procedures in practice.
引用
收藏
页码:359 / 373
页数:15
相关论文
共 22 条
[1]   Risk comparison of some shrinkage M-estimators in linear models [J].
Ahmed, S. E. ;
Hussein, A. A. ;
Sen, P. K. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2006, 18 (4-6) :401-415
[2]  
Ahmed S. E., 1999, J JAPAN STAT SOC, V29, P55
[3]   Shrinkage, pretest and absolute penalty estimators in partially linear models [J].
Ahmed, S. Ejaz ;
Doksum, Kjell A. ;
Hossain, S. ;
You, Jinhong .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2007, 49 (04) :435-454
[4]   LASSO and shrinkage estimation in Weibull censored regression models [J].
Ahmed, S. Ejaz ;
Hossain, Shakhawat ;
Doksum, Kjell A. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) :1273-1284
[5]  
[Anonymous], 2013, Regression Analysis of Count Data
[6]  
[Anonymous], STAT MODELING BIOMED
[7]  
[Anonymous], 2006, Journal of the Royal Statistical Society, Series B
[8]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[9]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[10]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22