PRIMARY-LIKE SUBMODULES AND A SCHEME OVER THE PRIMARY-LIKE SPECTRUM OF MODULES

被引:2
作者
Moghimi, H. Fazaeli [1 ]
Rashedi, F. [1 ]
机构
[1] Univ Birjand, Dept Math, POB 97175-615, Birjand, Iran
关键词
Zariski topology; sheaf of rings; scheme; ZARISKI TOPOLOGY;
D O I
10.18514/MMN.2017.1219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity and M be a unitary R-module. In this paper, we obtain a scheme (X(M ), O-x(M)) over the primary-like spectrum X(M) of M and prove that (X,(M), O-x.((M))) is a Noetherian scheme when R is a Noetherian ring.
引用
收藏
页码:961 / 974
页数:14
相关论文
共 12 条
  • [1] THE ZARISKI TOPOLOGY-GRAPH OF MODULES OVER COMMUTATIVE RINGS
    Ansari-Toroghy, H.
    Habibi, Sh.
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (08) : 3283 - 3296
  • [2] ON THE PRIME SPECTRUM OF A MODULE AND ZARISKI TOPOLOGIES
    Ansari-Toroghy, H.
    Ovlyaee-Sarmazdeh, R.
    [J]. COMMUNICATIONS IN ALGEBRA, 2010, 38 (12) : 4461 - 4475
  • [3] Atiyah M. F., 1969, Introduction to Commutative Algebra
  • [4] Hartshorne R., 1977, GRADUATE TEXT MATH, V52
  • [5] PRIME SUBMODULES AND A SHEAF ON THE PRIME SPECTRA OF MODULES
    Hassanzadeh-Lelekaami, D.
    Roshan-Shekalgourabi, H.
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (07) : 3063 - 3077
  • [6] Lu C.-P., 1989, MATH JPN, V34, P211
  • [7] Lu C.P., 1984, COMM MATH U SANCTI P, V33, P61
  • [8] Lu CP, 2007, HOUSTON J MATH, V33, P125
  • [9] Lu CP, 1999, HOUSTON J MATH, V25, P417
  • [10] PRIME SUBMODULES
    MCCASLAND, RL
    MOORE, ME
    [J]. COMMUNICATIONS IN ALGEBRA, 1992, 20 (06) : 1803 - 1817