18F-FDG PET Imaging of Murine Atherosclerosis: Association with Gene Expression of Key Molecular Markers

被引:36
|
作者
Hag, Anne Mette Fisker [1 ,2 ]
Pedersen, Sune Folke [1 ,2 ]
Christoffersen, Christina [3 ]
Binderup, Tina [1 ,2 ]
Jensen, Mette Munk [1 ,2 ]
Jorgensen, Jesper Tranekjaer [1 ,2 ]
Skovgaard, Dorthe [1 ,2 ]
Ripa, Rasmus Sejersten [1 ,2 ]
Kjaer, Andreas [1 ,2 ]
机构
[1] Univ Copenhagen, Rigshosp, Fac Hlth & Med Sci, DK-2100 Copenhagen, Denmark
[2] Univ Copenhagen, Rigshosp, Dept Clin Physiol Nucl Med & PET, DK-2100 Copenhagen, Denmark
[3] Rigshosp, Dept Clin Biochem, DK-2100 Copenhagen, Denmark
来源
PLOS ONE | 2012年 / 7卷 / 11期
基金
英国医学研究理事会;
关键词
TISSUE FACTOR; PLAQUE INFLAMMATION; ACCUMULATION; MICE; CHEMOATTRACTANT; OSTEOPONTIN; ATHEROGENESIS; DEFICIENCY; DELETION; THERAPY;
D O I
10.1371/journal.pone.0050908
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aim: To study whether F-18-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between F-18-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE(-/-) mice. Methods: Nine groups of apoE(-/-) mice were given normal chow or high-fat diet. At different time-points, F-18-FDG PET/contrast-enhanced CT scans were performed on dedicated animal scanners. After scans, animals were euthanized, aortas removed, gamma counted, RNA extracted from the tissue, and gene expression of chemo (C-X-C motif) ligand 1 (CXCL-1), monocyte chemoattractant protein (MCP)-1, vascular cell adhesion molecule (VCAM)-1, cluster of differentiation molecule (CD)-68, osteopontin (OPN), lectin-like oxidized LDL-receptor (LOX)-1, hypoxia-inducible factor (HIF)-1 alpha, HIF-2 alpha, vascular endothelial growth factor A (VEGF), and tissue factor (TF) was measured by means of qPCR. Results: The uptake of F-18-FDG increased over time in the groups of mice receiving high-fat diet measured by PET and ex vivo gamma counting. The gene expression of all examined markers of atherosclerosis correlated significantly with F-18-FDG uptake. The strongest correlation was seen with TF and CD68 (p < 0.001). A multivariate analysis showed CD68, OPN, TF, and VCAM-1 to be the most important contributors to the uptake of F-18-FDG. Together they could explain 60% of the F-18-FDG uptake. Conclusion: We have demonstrated that F-18-FDG can be used to follow the progression of atherosclerosis in apoE(-/-) mice. The gene expression of ten molecular markers representing different molecular processes important for atherosclerosis was shown to correlate with the uptake of F-18-FDG. Especially, the gene expressions of CD68, OPN, TF, and VCAM-1 were strong predictors for the uptake.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] 18F-FDG PET/MR-imaging in a Gottingen Minipig model of atherosclerosis: Correlations with histology and quantitative gene expression
    Ludvigsen, Trine P.
    Pedersen, Sune F.
    Vegge, Andreas
    Ripa, Rasmus S.
    Johannesen, Helle H.
    Hansen, Adam E.
    Lofgren, Johan
    Schumacher-Petersen, Camilla
    Kirk, Rikke K.
    Pedersen, Henrik D.
    Christoffersen, Berit O.
    Orbaek, Mathilde
    Forman, Julie L.
    Klausen, Thomas L.
    Olsen, Lisbeth H.
    Kjaer, Andreas
    ATHEROSCLEROSIS, 2019, 285 : 55 - 63
  • [2] Variability and Uncertainty of 18F-FDG PET Imaging Protocols for Assessing Inflammation in Atherosclerosis: Suggestions for Improvement
    Huet, Pauline
    Burg, Samuel
    Le Guludec, Dominique
    Hyafil, Fabien
    Buvat, Irene
    JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (04) : 552 - 559
  • [3] Is 18F-FDG PET really a promising marker for clinically relevant atherosclerosis?
    Brammen, Lindsay
    Palumbo, Barbara
    Lupattelli, Graziana
    Sinzinger, Helmut
    HELLENIC JOURNAL OF NUCLEAR MEDICINE, 2014, 17 (01): : 62 - 63
  • [4] Evaluation of response: is 18F-FDG PET the answer?
    Chiti, Arturo
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2009, 36 (05) : 733 - 734
  • [5] Influence of Bowel Preparation Before 18F-FDG PET/CT on Physiologic 18F-FDG Activity in the Intestine
    Soyka, Jan D.
    Strobel, Klaus
    Veit-Haibach, Patrick
    Schaefer, Niklaus G.
    Schmid, Daniel T.
    Tschopp, Alois
    Hany, Thomas F.
    JOURNAL OF NUCLEAR MEDICINE, 2010, 51 (04) : 507 - 510
  • [6] Association between 18F-FDG uptake and molecular subtype of breast cancer
    Kitajima, Kazuhiro
    Fukushima, Kazuhito
    Miyoshi, Yasuo
    Nishimukai, Arisa
    Hirota, Seiichi
    Igarashi, Yoko
    Katsuura, Takayuki
    Maruyama, Kaoru
    Hirota, Shozo
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (09) : 1371 - 1377
  • [7] 18F-FDG PET or PET/CT in Mantle Cell Lymphoma
    Albano, Domenico
    Treglia, Giorgio
    Gazzilli, Maria
    Cerudelli, Elisabetta
    Giubbini, Raffaele
    Bertagna, Francesco
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2020, 20 (07) : 422 - 430
  • [8] Clinical Cerenkov Luminescence Imaging of 18F-FDG
    Thorek, Daniel L. J.
    Riedl, Christopher C.
    Grimm, Jan
    JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (01) : 95 - 98
  • [9] 18F-FDG PET for staging and monitoring of solitary plasmacytoma
    Adib, S.
    Leleu, X.
    Robu, D.
    Huglo, D.
    Steinling, M.
    MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE, 2010, 34 (02): : 88 - 95
  • [10] 18F-FDG PET/CT imaging in rectal cancer: relationship with the RAS mutational status
    Lovinfosse, Pierre
    Koopmansch, Benjamin
    Lambert, Frederic
    Jodogne, Sebastien
    Kustermans, Gaelle
    Hatt, Mathieu
    Visvikis, Dimitris
    Seidel, Laurence
    Polus, Marc
    Albert, Adelin
    Delvenne, Philippe
    Hustinx, Roland
    BRITISH JOURNAL OF RADIOLOGY, 2016, 89 (1063)