Identifying the role of non-adiabatic passing electrons in ITG/TEM microturbulence by comparing fully kinetic and hybrid electron simulations

被引:14
作者
Dominski, J. [1 ]
Brunner, S. [1 ]
Aghdam, S. K. [1 ]
Goerler, T. [2 ]
Jenko, F. [2 ]
Told, D. [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland
[2] Max Planck Inst Plasmaphysik, EURATOM Assoc, Boltzmannstrasse 2, D-85748 Garching, Germany
来源
JOINT VARENNA-LAUSANNE INTERNATIONAL WORKSHOP 2012 | 2012年 / 401卷
基金
瑞士国家科学基金会;
关键词
TURBULENCE;
D O I
10.1088/1742-6596/401/1/012006
中图分类号
O59 [应用物理学];
学科分类号
摘要
The response of passing electrons in Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) microinstability regimes is investigated in tokamak geometry making use of the flux-tube version of the gyrokinetic code GENE [Jenko et al. 2000 Phys. Plasmas 7 1904]. Results are obtained with two different electron models: 1) fully kinetic, and 2) hybrid, in which passing particles are forced to respond adiabatically while trapped are handled kinetically. Comparing linear eigenmodes obtained with these two models enables to systematically isolate radially fine structures located at corresponding MRS's, clearly resulting from the non-adiabatic passing electron response. The analysis of preliminary non-linear simulations in the ITG regime shows that these fine structures on the non-axisymmetric modes survive in the turbulent phase. Furthermore, through non-linear coupling to axisymmetric modes, they induce modulations in the effective density and ion/electron temperature profiles: flattening at low order MRS's and steepening in between, as was already observed in Ref. [Waltz et al., 2006 Phys. Plasmas 13 052301].
引用
收藏
页数:11
相关论文
共 9 条
[1]   Foundations of nonlinear gyrokinetic theory [J].
Brizard, A. J. ;
Hahm, T. S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :421-468
[2]   Role of nonadiabatic untrapped electrons in global electrostatic ion temperature gradient driven modes in a tokamak [J].
Chowdhury, J. ;
Ganesh, R. ;
Angelino, P. ;
Vaclavik, J. ;
Villard, L. ;
Brunner, S. .
PHYSICS OF PLASMAS, 2008, 15 (07)
[3]   Global-gyrokinetic study of finite β effects on linear microinstabilities [J].
Falchetto, GL ;
Vaclavik, J ;
Villard, L .
PHYSICS OF PLASMAS, 2003, 10 (05) :1424-1436
[4]   The global version of the gyrokinetic turbulence code GENE [J].
Goerler, T. ;
Lapillonne, X. ;
Brunner, S. ;
Dannert, T. ;
Jenko, F. ;
Merz, F. ;
Told, D. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (18) :7053-7071
[5]  
Gorler T., 2009, Multiscale effects in plasma microturbulence
[6]   Electron temperature gradient driven turbulence [J].
Jenko, F ;
Dorland, W ;
Kotschenreuther, M ;
Rogers, BN .
PHYSICS OF PLASMAS, 2000, 7 (05) :1904-1910
[7]   Clarifications to the limitations of the s-α equilibrium model for gyrokinetic computations of turbulence [J].
Lapillonne, X. ;
Brunner, S. ;
Dannert, T. ;
Jolliet, S. ;
Marinoni, A. ;
Villard, L. ;
Goerler, T. ;
Jenko, F. ;
Merz, F. .
PHYSICS OF PLASMAS, 2009, 16 (03)
[8]  
Lapillonne X, 2010, THESIS
[9]   Gyrokinetic simulations of off-axis minimum-q profile corrugations [J].
Waltz, R. E. ;
Austin, M. E. ;
Burrell, K. H. ;
Candy, J. .
PHYSICS OF PLASMAS, 2006, 13 (05)