Peroxisome proliferator-activated receptors: How their effects on macrophages can lead to the development of a new drug therapy against atherosclerosis

被引:61
作者
Li, AC [1 ]
Palinski, W
机构
[1] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
关键词
nuclear receptors; cardiovascular disease; metabolic syndrome; cholesterol homeostasis; signal transduction;
D O I
10.1146/annurev.pharmtox.46.120604.141247
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Peroxisome proliferator-activated receptors (PPARs) alpha (alpha), beta/delta (beta/delta), and gamma (gamma) are members of the nuclear receptor superfamily, which also includes the estrogen, androgen, and glucocorticoid receptors. Recent evidence suggests that PPARs regulate genes involved in lipid metabolism, glucose homeostasis, and inflammation in various tissues; however, the mechanisms involved are not completely understood. Anti-diabetic drugs, called glitazones, can selectively activate PPAR gamma, and hypolipidemic drugs, called fibrates, can weakly activate PPAR alpha. Both classes of drugs can decrease insulin resistance and dyslipidemias, which also makes them attractive for treating the metabolic syndrome. The metabolic syndrome exhibits a constellation of risk factors for atherosclerosis that include obesity, insulin resistance, dyslipidemias, and hypertension. Interestingly, all three PPARs are present in macrophages and can therefore have a profound effect on several disease processes, including atherosclerosis. Macrophages are key players in atherosclerotic lesion development. Currently, the first line of defense in reducing the risk of atherosclerosis is aimed at lowering low-density lipoproteins (LDL) and raising high-density lipoproteins (HDL), but a large percentage of patients on statins still succumb to coronary artery disease. However, with the development of drugs selectively activating PPARs, a new arsenal of drugs specifically targeting to the macrophage/foam cell may potentially have a profound impact on how we treat cardiovascular disease.
引用
收藏
页码:1 / 39
页数:43
相关论文
共 204 条
[1]   Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1 [J].
Accad, M ;
Smith, SJ ;
Newland, DL ;
Sanan, DA ;
King, LE ;
Linton, MF ;
Fazio, S ;
Farese, RV .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (06) :711-719
[2]   Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages [J].
Aiello, RJ ;
Brees, D ;
Bourassa, PA ;
Royer, L ;
Lindsey, S ;
Coskran, T ;
Haghpassand, M ;
Francone, OL .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2002, 22 (04) :630-637
[3]   Gemfibrozil improves insulin sensitivity and flow-mediated vasodilatation in type 2 diabetic patients [J].
Avogaro, A ;
Miola, M ;
Favaro, A ;
Gottardo, L ;
Pacini, G ;
Manzato, E ;
Zambon, S ;
Sacerdoti, D ;
de Kreutzenberg, S ;
Piliego, T ;
Tiengo, A ;
Del Prato, S .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2001, 31 (07) :603-609
[4]   Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism - Comparison with high density lipoprotein-mediated reverse cholesterol transport [J].
Babiker, A ;
Andersson, O ;
Lund, E ;
Xiu, RJ ;
Deeb, S ;
Reshef, A ;
Leitersdorf, E ;
Diczfalusy, U ;
Bjorkhem, I .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (42) :26253-26261
[5]   Efficacy and safety of ezetimibe co-administered with simvastatin compared with atorvastatin in adults with hypercholesterolemia [J].
Ballantyne, CM ;
Blazing, MA ;
King, TR ;
Brady, WE ;
Palmisano, J .
AMERICAN JOURNAL OF CARDIOLOGY, 2004, 93 (12) :1487-1494
[6]   PPARγ is required for placental, cardiac, and adipose tissue development [J].
Barak, Y ;
Nelson, MC ;
Ong, ES ;
Jones, YZ ;
Ruiz-Lozano, P ;
Chien, KR ;
Koder, A ;
Evans, RM .
MOLECULAR CELL, 1999, 4 (04) :585-595
[7]   Biosynthesis of 15-deoxy-Δ12,14-PGJ2 and the litigation of PPARγ [J].
Bell-Parikh, LC ;
Ide, T ;
Lawson, JA ;
McNamara, P ;
Reilly, M ;
FitzGerald, GA .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (06) :945-955
[8]   Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice [J].
Berthou, L ;
Duverger, N ;
Emmanuel, F ;
Langouet, S ;
Auwerx, J ;
Guillouzo, A ;
Fruchart, JC ;
Rubin, E ;
Denefle, P ;
Staels, B ;
Branellec, D .
JOURNAL OF CLINICAL INVESTIGATION, 1996, 97 (11) :2408-2416
[9]   The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease [J].
Bodzioch, M ;
Orsó, E ;
Klucken, T ;
Langmann, T ;
Böttcher, L ;
Diederich, W ;
Drobnik, W ;
Barlage, S ;
Büchler, C ;
Porsch-Özcürümez, M ;
Kaminski, WE ;
Hahmann, HW ;
Oette, K ;
Rothe, G ;
Aslanidis, C ;
Lackner, KJ ;
Schmitz, G .
NATURE GENETICS, 1999, 22 (04) :347-351
[10]   Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis [J].
Boring, L ;
Gosling, J ;
Cleary, M ;
Charo, IF .
NATURE, 1998, 394 (6696) :894-897