Learning visual entities and their visual attributes from text corpora

被引:2
作者
Boiy, Erik [1 ]
Deschacht, Koen [1 ]
Moens, Marie-Francine [1 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Louvain, Belgium
来源
DEXA 2008: 19TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS | 2008年
关键词
D O I
10.1109/DEXA.2008.59
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We automatically construct a dictionary of visual (possible to perceive on a picture) or non-visual (impossible to perceive directly on a picture) entities and attributes, based on statistical association techniques used in data mining. We compute whether certain words that could function as entities or attributes of an entity are correlated with texts that describe images and use these words for the detection of visual nouns and visual adjectives. We compare our corpus-based approach with a knowledge-rich approach based on WordNet, and with a combination of both approaches.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 24 条
[1]  
AMIR A, 2005, P TRECVID 2005 GAITH
[2]  
[Anonymous], 2006, INFORM EXTRACTION AL
[3]  
[Anonymous], ACM INT C IM VID RET
[4]  
AYACHE S, 2005, P TRECVID 2005 GAITH
[5]   Matching words and pictures [J].
Barnard, K ;
Duygulu, P ;
Forsyth, D ;
de Freitas, N ;
Blei, DM ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (06) :1107-1135
[6]  
Berg TL, 2004, NEURAL INFORM PROCES, P137
[7]  
Budanitsky A, 2006, COMPUT LINGUIST, V32, P13, DOI 10.1162/coli.2006.32.1.13
[8]  
Carbonell JG, 1997, INT JOINT CONF ARTIF, P708
[9]   IMAGE-INFORMATION SYSTEMS - WHERE DO WE GO FROM HERE [J].
CHANG, SK ;
HSU, AD .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1992, 4 (05) :431-442
[10]  
Coelho TAS, 2004, IEEE T KNOWL DATA EN, V16, P408, DOI 10.1109/TKDE.2004.1269666