On the equivalence of viscosity solutions and weak solutions or a quasi-linear equation

被引:203
作者
Juutinen, P
Lindqvist, P
Manfredi, JJ
机构
[1] Univ Jyvaskyla, Dept Math, FIN-40351 Jyvaskyla, Finland
[2] Norwegian Univ Sci & Technol, Dept Math, N-7491 Trondheim, Norway
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
p-Laplacian; viscosity solutions; p-superharmonic functions;
D O I
10.1137/S0036141000372179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss and compare various notions of weak solution for the p-Laplace equation -div(\delu\(p-2)delu) = 0 and its parabolic counterpart u(t) - div(\delu\(p-2)delu) = 0. In addition to the usual Sobolev weak solutions based on integration by parts, we consider the p-superharmonic (or p-superparabolic) functions from nonlinear potential theory and the viscosity solutions based on generalized pointwise derivatives ( jets). Our main result states that in both the elliptic and the parabolic case, the viscosity supersolutions coincide with the potential-theoretic supersolutions.
引用
收藏
页码:699 / 717
页数:19
相关论文
共 21 条
[1]  
[Anonymous], PRIKL MAT MECH
[2]  
CHEN YG, 1991, J DIFFER GEOM, V33, P749
[3]  
Crandall M.G., 1996, Pitman Res. Notes Math. Ser., V350, P136
[4]  
Crandall MG, 1997, LECT NOTES MATH, V1660, P1
[5]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[7]  
Dibenedetto E, 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[8]  
Fukuda I, 1993, DIFFERENTIAL INTEGRA, V6, P1231
[9]  
Heinonen J., 1993, NONLINEAR POTENTIAL
[10]   GENERALIZED MOTION OF NONCOMPACT HYPERSURFACES WITH VELOCITY HAVING ARBITRARY GROWTH ON THE CURVATURE TENSOR [J].
ISHII, H ;
SOUGANIDIS, P .
TOHOKU MATHEMATICAL JOURNAL, 1995, 47 (02) :227-250