On the concave and convex solutions of a mixed convection boundary layer approximation in a porous medium

被引:20
作者
Brighi, B [1 ]
Hoernel, JD [1 ]
机构
[1] Univ Haute Alsace, Lab Math & Applicat, F-68093 Mulhouse, France
关键词
boundary layer; similarity solution; third order nonlinear differential equation; boundary value problem;
D O I
10.1016/j.aml.2005.02.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the similarity solutions of a plane mixed convection boundary layer flow near a semi-vertical plate, with a prescribed power law function of the distance from the leading edge for the temperature, that is embedded in a porous medium. We show the existence and uniqueness of convex and concave solutions for positive values of the power law exponent. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 74
页数:6
相关论文
共 12 条
[1]   Mixed convection boundary-layer flow over a vertical surface embedded in a porous medium [J].
Aly, EH ;
Elliott, L ;
Ingham, DB .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2003, 22 (06) :529-543
[2]   On a family of differential equations for boundary layer approximations in porous media [J].
Belhachmi, Z ;
Brighi, B ;
Taous, K .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2001, 12 :513-528
[3]  
BELHACHMI Z, 2000, ACTA MATH U COMENIAN, V69, P199
[4]  
Blasius H., 1908, Z Math Physik, V56, P1
[5]  
Brighi B, 2005, DISCRETE CONT DYN S, V12, P929
[6]  
Brighi B, 2002, Z ANAL ANWEND, V21, P931
[8]  
GUEDDA M, IN PRESS APPL MATH L
[9]  
HARTMANN P, 1964, ORDINARY DIFFERENTIA
[10]   OSCILLATING SOLUTIONS OF THE FALKNER-SKAN EQUATION FOR POSITIVE-BETA [J].
HASTINGS, SP ;
TROY, WC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 71 (01) :123-144