Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams

被引:14
作者
Battista, A. [1 ,2 ]
Della Corte, A. [2 ,3 ]
dell'Isola, F. [2 ,3 ]
Seppecher, P. [2 ,4 ]
机构
[1] Uivers La Rochelle, La Rochelle, France
[2] Univ LAquila, M&MoCS, Res Ctr, Laquila, Italy
[3] Univ Roma La Sapienza, Rome, Italy
[4] Univ Toulon & Var, IMATH, Toulon, France
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2018年 / 69卷 / 03期
关键词
Nonlinear elasticity; Generalized Timoshenko beam; Microstructured beam; Non-convex variational problems; ASYMPTOTIC NONLINEAR MODEL; THIN-WALLED RODS;
D O I
10.1007/s00033-018-0946-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we study a natural nonlinear generalization of Timoshenko beam model and show that it can describe the homogenized deformation energy of a 1D continuum with a simple microstructure. We prove the well posedness of the corresponding variational problem in the case of a generic end load, discuss some regularity issues and evaluate the critical load. Moreover, we generalize the model so as to include an additional rotational spring in the microstructure. Finally, some numerical simulations are presented and discussed.
引用
收藏
页数:22
相关论文
共 61 条
  • [1] Truss modular beams with deformation energy depending on higher displacement gradients
    Alibert, JJ
    Seppecher, P
    Dell'Isola, F
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2003, 8 (01) : 51 - 73
  • [2] On generalized Cosserat-type theories of plates and shells: a short review and bibliography
    Altenbach, Johannes
    Altenbach, Holm
    Eremeyev, Victor A.
    [J]. ARCHIVE OF APPLIED MECHANICS, 2010, 80 (01) : 73 - 92
  • [3] [Anonymous], COLLECTED PAPERS R S
  • [4] [Anonymous], 2005, The Pendulum: A Case Study in Physics
  • [5] [Anonymous], 2017, MATH MODELLING SOLID
  • [6] Ball John M., 1987, ANAL THERMOMECHANICS, P285
  • [7] Barchiesi E, 2017, ADV STRUCT MAT, V59, P239, DOI 10.1007/978-981-10-3797-9_14
  • [8] Bernoulli D., 1742, correspondence mathematique et physique, V2
  • [9] Bernoulli J., 1692, WERKE JAKOB BERNOULL, P223
  • [10] Deformation analysis of functionally graded beams by the direct approach
    Birsan, M.
    Altenbach, H.
    Sadowski, T.
    Eremeyev, V. A.
    Pietras, D.
    [J]. COMPOSITES PART B-ENGINEERING, 2012, 43 (03) : 1315 - 1328