Residual and Equilibrated Error Estimators for Magnetostatic Problems Solved by Finite Element Method

被引:24
|
作者
Tang, Zuqi [1 ]
Le Menach, Yvonnick [1 ]
Creuse, Emmanuel [2 ,3 ]
Nicaise, Serge [4 ]
Piriou, Francis [1 ]
Nemitz, Nicolas [5 ]
机构
[1] Univ Lille 1, L2EP, F-59655 Villeneuve Dascq, France
[2] Univ Lille 1, LPP UMR 8524, F-59655 Villeneuve Dascq, France
[3] Univ Lille 1, INRIA Lille Nord Europe, F-59655 Villeneuve Dascq, France
[4] Univ Valenciennes, FR CNRS 2956, LAMAV, F-59313 Valenciennes 09, France
[5] EDF R&D, THEMIS, F-92141 Clamart, France
关键词
Error estimator; finite element method; magnetostatic problem; SUPERCONVERGENT PATCH RECOVERY; COMPUTATION; EQUATIONS; FIELD;
D O I
10.1109/TMAG.2013.2271993
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In finite element computations, the choice of the mesh is crucial to obtain accurate solutions. In order to evaluate the quality of the mesh, a posteriori error estimators can be used. In this paper, we develop residual-based error estimators for magnetostatic problems with both classical formulations in term of potentials used, as well as the equilibrated error estimator. We compare their behaviors on some numerical applications, to understand the interest of each of them in the remeshing process.
引用
收藏
页码:5715 / 5723
页数:9
相关论文
共 50 条
  • [41] A posteriori error estimators for nonconforming finite element methods
    Dari, E
    Duran, R
    Padra, C
    Vampa, V
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (04): : 385 - 400
  • [42] Local error estimators for finite element linear analysis
    Ladevèze, P
    Rougeot, P
    Blanchard, P
    Moreau, JP
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 176 (1-4) : 231 - 246
  • [43] Local error estimators for finite element linear analysis
    Ladeveze, P.
    Rougeot, Ph.
    Blanchard, P.
    Moreau, J.P.
    Computer Methods in Applied Mechanics and Engineering, 1999, 176 (01): : 231 - 246
  • [44] Improved Equilibrated Error Estimates for Open Boundary Magnetostatic Problems Based on Dual A and H Formulations
    Zhao, Yanpu
    Tang, Zuqi
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (06)
  • [45] Shape optimization of nonlinear magnetostatic problems using the finite element method embedded in optimizer
    Ovacik, L
    Salon, SJ
    IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (05) : 4323 - 4325
  • [46] DESIGN SENSITIVITY ANALYSIS FOR NONLINEAR MAGNETOSTATIC PROBLEMS USING FINITE-ELEMENT METHOD
    PARK, IH
    LEE, BT
    HAHN, SY
    IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (02) : 1533 - 1536
  • [47] An Equilibrated Error Estimator for the Multiscale Finite Element Method of a 2-D Eddy Current Problem
    Schoebinger, Markus
    Schoeberl, Joachim
    Hollaus, Karl
    IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (06)
  • [48] RESIDUAL A POSTERIORI ERROR ESTIMATION FOR THE VIRTUAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    da Veiga, L. Beirao
    Manzini, G.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (02): : 577 - 599
  • [49] Shape optimization of nonlinear magnetostatic problems using the finite element method embedded in optimizer
    Rensselaer Polytechnic Inst, Troy, United States
    IEEE Trans Magn, 5 pt 2 (4323-4325):
  • [50] Comparison of Numerical Error Estimators for Eddy-Current Problems Solved by FEM
    Tittarelli, R.
    Le Menach, Y.
    Piriou, F.
    Creuse, E.
    Nicaise, S.
    Ducreux, J. -P.
    IEEE TRANSACTIONS ON MAGNETICS, 2018, 54 (03)