Residual and Equilibrated Error Estimators for Magnetostatic Problems Solved by Finite Element Method

被引:24
|
作者
Tang, Zuqi [1 ]
Le Menach, Yvonnick [1 ]
Creuse, Emmanuel [2 ,3 ]
Nicaise, Serge [4 ]
Piriou, Francis [1 ]
Nemitz, Nicolas [5 ]
机构
[1] Univ Lille 1, L2EP, F-59655 Villeneuve Dascq, France
[2] Univ Lille 1, LPP UMR 8524, F-59655 Villeneuve Dascq, France
[3] Univ Lille 1, INRIA Lille Nord Europe, F-59655 Villeneuve Dascq, France
[4] Univ Valenciennes, FR CNRS 2956, LAMAV, F-59313 Valenciennes 09, France
[5] EDF R&D, THEMIS, F-92141 Clamart, France
关键词
Error estimator; finite element method; magnetostatic problem; SUPERCONVERGENT PATCH RECOVERY; COMPUTATION; EQUATIONS; FIELD;
D O I
10.1109/TMAG.2013.2271993
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In finite element computations, the choice of the mesh is crucial to obtain accurate solutions. In order to evaluate the quality of the mesh, a posteriori error estimators can be used. In this paper, we develop residual-based error estimators for magnetostatic problems with both classical formulations in term of potentials used, as well as the equilibrated error estimator. We compare their behaviors on some numerical applications, to understand the interest of each of them in the remeshing process.
引用
收藏
页码:5715 / 5723
页数:9
相关论文
共 50 条
  • [21] η%-Superconvergence of Finite Element Solutions and Error Estimators
    L. Zhang
    T. Strouboulis
    I. Babuška
    Advances in Computational Mathematics, 2001, 15 : 393 - 404
  • [22] Residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems
    Du, Shaohong
    Lin, Runchang
    Zhang, Zhimin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 412
  • [23] A non-intrusive approach of goal-oriented error estimation for evolution problems solved by the finite element method
    Chamoin, Ludovic
    Ladeveze, Pierre
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2008, 17 (5-7): : 981 - 992
  • [24] Two guaranteed equilibrated error estimators for Harmonic formulations in eddy current problems
    Creuse, E.
    Le Menach, Y.
    Nicaise, S.
    Piriou, F.
    Tittarelli, R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (06) : 1549 - 1562
  • [25] A 3-DIMENSIONAL ADAPTIVE FINITE-ELEMENT METHOD FOR MAGNETOSTATIC PROBLEMS
    KIM, HS
    HONG, SP
    CHOI, K
    JUNG, HK
    HAHN, SY
    IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (05) : 4081 - 4084
  • [26] An Equilibrated a Posteriori Error Estimator for Arbitrary-Order Nedelec Elements for Magnetostatic Problems
    Gedicke, Joscha
    Geevers, Sjoerd
    Perugia, Ilaria
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [27] Numerical Simulation for Magnetostatic Problems Based on A-λ Mixed Finite Element Method
    Jiang P.
    Li J.
    Zhang Q.
    Luo L.
    Guan Z.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2018, 33 (05): : 1167 - 1176
  • [28] Uniform convergence and a posteriori error estimators for the enhanced strain finite element method
    Braess, D
    Carstensen, C
    Reddy, BD
    NUMERISCHE MATHEMATIK, 2004, 96 (03) : 461 - 479
  • [29] Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method
    Gonzalez-Estrada, O. A.
    Rodenas, J. J.
    Bordas, S. P. A.
    Nadal, E.
    Kerfriden, P.
    Fuenmayor, F. J.
    COMPUTERS & STRUCTURES, 2015, 152 : 1 - 10
  • [30] Uniform convergence and a posteriori error estimators for the enhanced strain finite element method
    D. Braess
    C. Carstensen
    B.D. Reddy
    Numerische Mathematik, 2004, 96 : 461 - 479