The PYXAID Program for Non-Adiabatic Molecular Dynamics in Condensed Matter Systems

被引:664
作者
Akimov, Alexey V. [1 ,2 ]
Prezhdo, Oleg V. [1 ]
机构
[1] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[2] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
关键词
SENSITIZED SOLAR-CELLS; CDSE QUANTUM DOTS; INTERFACIAL ELECTRON-TRANSFER; QUANTIZED HAMILTON DYNAMICS; MULTIPLE EXCITON GENERATION; INITIO TIME-DOMAIN; AB-INITIO; SINGLET FISSION; CHARGE-TRANSFER; PROTON-TRANSFER;
D O I
10.1021/ct400641n
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work introduces the PYXAID program, developed for non-adiabatic molecular dynamics simulations in condensed matter systems. By applying the classical path approximation to the fewest switches surface hopping approach, we have developed an efficient computational tool that can be applied to study photoinduced dynamics at the air initio level in systems composed of hundreds of atoms and involving thousands of electronic states. The technique is used to study in detail the ultrafast relaxation of hot electrons in crystalline pentacene. The simulated relaxation occurs on a 500 fs time scale, in excellent agreement with experiment, and is driven by molecular lattice vibrations in the 200-250 cm(-1) frequency range. The PYXAID program is organized as a Python extension module and can be easily combined with other Python-driven modules, enhancing user-friendliness and flexibility of the software. The source code and additional information are available on the Web at the address http://gdriv.es/pyxaid. The program is released under the GNU General Public License.
引用
收藏
页码:4959 / 4972
页数:14
相关论文
共 148 条
[1]  
Abrahams D., 2003, PYTHON C C USERS J
[2]   Influence of thermal fluctuations on interfacial electron transfer in functionalized TiO2 semiconductors [J].
Abuabara, SG ;
Rego, LGC ;
Batista, VS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (51) :18234-18242
[3]   Nonadiabatic Dynamics of Positive Charge during Photocatalytic Water Splitting on GaN(10-10) Surface: Charge Localization Governs Splitting Efficiency [J].
Akimov, Alexey V. ;
Muckerman, James T. ;
Prezhdo, Oleg V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (23) :8682-8691
[4]   Theoretical Insights into Photoinduced Charge Transfer and Catalysis at Oxide Interfaces [J].
Akimov, Alexey V. ;
Neukirch, Amanda J. ;
Prezhdo, Oleg V. .
CHEMICAL REVIEWS, 2013, 113 (06) :4496-4565
[5]   Formulation of quantized Hamiltonian dynamics in terms of natural variables [J].
Akimov, Alexey V. ;
Prezhdo, Oleg V. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (22)
[6]   Exact quantum statistics for electronically nonadiabatic systems using continuous path variables [J].
Ananth, Nandini ;
Miller, Thomas F., III .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (23)
[7]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[8]   Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface [J].
Anderson, NA ;
Lian, TQ .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2005, 56 :491-519
[9]   Time-dependent density-functional theory in massively parallel computer architectures: the OCTOPUS project [J].
Andrade, Xavier ;
Alberdi-Rodriguez, Joseba ;
Strubbe, David A. ;
Oliveira, Micael J. T. ;
Nogueira, Fernando ;
Castro, Alberto ;
Muguerza, Javier ;
Arruabarrena, Agustin ;
Louie, Steven G. ;
Aspuru-Guzik, Alan ;
Rubio, Angel ;
Marques, Miguel A. L. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (23)
[10]   Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces [J].
Ardo, Shane ;
Meyer, Gerald J. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :115-164