The inverted pendulum: A singularity theory approach

被引:25
作者
Broer, HW [1 ]
Hoveijn, I [1 ]
van Noort, M [1 ]
Vegter, G [1 ]
机构
[1] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
关键词
D O I
10.1006/jdeq.1998.3623
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The inverted pendulum with small parametric forcing is considered as an example of a wider class of parametrically forced Hamiltonian systems. The qualitative dynamics of the Poincare map corresponding to the central periodic solution is studied via an approximating integrable normal form. At bifurcation points we construct local universal models in the appropriate symmetry context, using equivariant singularity theory. In this context, structural stability can be proved under generic conditions. (C) 1999 Academic Press.
引用
收藏
页码:120 / 149
页数:30
相关论文
共 29 条
[1]  
[Anonymous], 1980, Graduate Texts in Mathematics
[2]  
[Anonymous], LECT NOTES MATH
[3]  
[Anonymous], DYN REPORT
[4]  
[Anonymous], DYNAMICS REPORTED
[5]  
[Anonymous], LECT NOTES MATH
[6]  
BACK A, 1992, NOT AM MATH SOC, V39, P303
[7]   A NORMALLY ELLIPTIC HAMILTONIAN BIFURCATION [J].
BROER, HW ;
CHOW, SN ;
KIM, Y ;
VEGTER, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1993, 44 (03) :389-432
[8]   A reversible bifurcation analysis of the inverted pendulum [J].
Broer, HW ;
Hoveijn, I ;
van Noort, M .
PHYSICA D, 1998, 112 (1-2) :50-63
[9]   Resonances in a spring-pendulum: algorithms for equivariant singularity theory [J].
Broer, HW ;
Hoveijn, I ;
Lunter, GA ;
Vegter, G .
NONLINEARITY, 1998, 11 (06) :1569-1605
[10]   Equivariant singularity theory with distinguished parameters: Two case studies of resonant Hamiltonian systems [J].
Broer, HW ;
Lunter, GA ;
Vegter, G .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 112 (1-2) :64-80