Gas permeation, sorption and diffusion through PEBA/SiO2 nanocomposite membranes (chemical surface modification of nanoparticles)

被引:59
作者
Ghadimi, Ali [1 ]
Mohammadi, Toraj [1 ]
Kasiri, Norollah [1 ]
机构
[1] Iran Univ Sci & Technol, Dept Chem Engn, Res Ctr Membrane Separat Proc, Tehran, Iran
关键词
Nanocomposite membrane; Gas separation; Surface modification; Esterification; TRANSPORT PROPERTIES; POLYMERIC MEMBRANES; CO2; SEPARATION; CO2/H-2; TEMPERATURE; PERFORMANCE; CO2/N-2; DESIGN; OXIDE;
D O I
10.1016/j.ijhydene.2015.06.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the current investigation, separation performance of poly (Ether Block Amid), PEBA (grade 1657), membrane was improved via incorporation of SiO2 nanoparticles into the polymeric matrix. In order to attain excellent dispersion of SiO2 nanoparticles within the polymeric matrix, a chemical surface modification was performed via esterification reaction between the nanoparticles and cis-9-octadecenoic acid (OA). To the best of our knowledge; there is no investigation on employing this type of modification for preparation of SiO2/polymer nanocomposite membranes. Permeation, sorption and diffusion coefficients of pure gases, CO2, H-2, CH4 and N-2, through the prepared neat and the nanocomposite membranes were studied at temperature of (T = 25 degrees C) and pressure of (P = 2 bar). The results showed that, with increasing the loading content of nanoparticles from 0 wt% (the neat PEBA membrane) to 8 wt%, ideal permeation selectivity values of CO2/H-2, CO2/CH4 and CO2/N-2 improve from 9, 18 and 55 to 17, 45 and 124, respectively. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:9723 / 9732
页数:10
相关论文
共 38 条
[1]   Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes [J].
Kim, JH ;
Lee, YM .
JOURNAL OF MEMBRANE SCIENCE, 2001, 193 (02) :209-225
[2]   Gas transport properties of Pebax®/room temperature ionic liquid gel membranes [J].
Bernardo, Paola ;
Jansen, Johannes Carolus ;
Bazzarelli, Fabio ;
Tasselli, Franco ;
Fuoco, Alessio ;
Friess, Karel ;
Izak, Pavel ;
Jarmarova, Veronika ;
Kacirkova, Marie ;
Clarizia, Gabriele .
SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 97 :73-82
[3]  
Bondar VI, 2000, J POLYM SCI POL PHYS, V38, P2051, DOI 10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO
[4]  
2-D
[5]   Membrane technologies for CO2 separation [J].
Brunetti, A. ;
Scura, F. ;
Barbieri, G. ;
Drioli, E. .
JOURNAL OF MEMBRANE SCIENCE, 2010, 359 (1-2) :115-125
[6]   PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation [J].
Car, Anja. ;
Stropnik, Chrtomir ;
Yave, Wilfredo ;
Peinemann, Klaus-V. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 307 (01) :88-95
[7]   High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation [J].
Chen, Hang Zheng ;
Thong, Zhiwei ;
Li, Pei ;
Chung, Tai-Shung .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (10) :5043-5053
[8]   CO2-selective membranes for hydrogen purification and the effect of carbon monoxide (CO) on its gas separation performance [J].
Chen, Hang Zheng ;
Chung, Tai-Shung .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (07) :6001-6011
[9]   Polymer-inorganic nanocomposite membranes for gas separation [J].
Cong, Hailin ;
Radosz, Maciej ;
Towler, Brian Francis ;
Shen, Youqing .
SEPARATION AND PURIFICATION TECHNOLOGY, 2007, 55 (03) :281-291
[10]  
Esposito E, 2015, CHEM ENG PR IN PRESS