Plasma facing components with capillary porous system and liquid metal coolant flow

被引:12
作者
Khodak, Andrei [1 ]
Maingi, Rajesh [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
MAGNETOHYDRODYNAMIC FLOW; DIVERTOR;
D O I
10.1063/5.0088015
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Liquid metal can create a renewable protective surface on plasma facing components (PFC), with an additional advantage of deuterium pumping and the prospect of tritium extraction if liquid lithium (LL) is used and maintained below 450 & DEG;C, the temperature above which LL vapor pressure begins to contaminate the plasma. LM can also be utilized as an efficient coolant, driven by the Lorentz force created with the help of the magnetic field in fusion devices. Capillary porous systems can serve as a conduit of LM and simultaneously provide stabilization of the LM flow, protecting against spills into the plasma. Recently, a combination of a fast-flowing LM cooling system with a porous plasma facing wall (CPSF) was investigated [A. Khodak and R. Maingi, Nucl. Mater. Energy 26, 100935 (2021)]. The system takes an advantage of a magnetohydrodynamics velocity profile as well as attractive LM properties to promote efficient heat transfer from the plasma to the LL at low pumping energy cost, relative to the incident heat flux on the PFC. In the case of a disruption leading to excessive heat flux from the plasma to the LM PFCs, LL evaporation can stabilize the PFC surface temperature, due to high evaporation heat and apparent vapor shielding. The proposed CPSF was optimized analytically for the conditions of a fusion nuclear science facility [Kessel et al., Fusion Sci. Technol. 75, 886 (2019)]: 10 T toroidal field and 10 MW/m(2) peak incident heat flux. Computational fluid dynamics analysis confirmed that a CPSF system with 2.5 mm square channels can pump enough LL so that no additional coolant is needed. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:12
相关论文
共 20 条
[1]  
Carslaw H.S., 1947, Conduction of Heat in Solids
[2]   MAGNETOHYDRODYNAMIC FLOW IN A RECTANGULAR DUCT WITH PERFECTLY CONDUCTING ELECTRODES [J].
CHIANG, D ;
LUNDGREN, T .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1967, 18 (01) :92-&
[3]  
Davison H. W., 1968, D4650 NASA TN
[4]   Empiricial scaling of inter-ELM power widths in ASDEX Upgrade and JET [J].
Eich, T. ;
Sieglin, B. ;
Scarabosio, A. ;
Herrmann, A. ;
Kallenbach, A. ;
Matthews, G. F. ;
Jachmich, S. ;
Brezinsek, S. ;
Rack, M. ;
Goldston, R. J. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S72-S77
[5]   Progress towards steady state at low aspect ratio on the National Spherical Torus Experiment (NSTX) [J].
Gates, D. A. ;
Menard, J. ;
Maingi, R. ;
Kaye, S. ;
Sabbagh, S. A. ;
Diem, S. ;
Wilson, J. R. ;
Bell, M. G. ;
Bell, R. E. ;
Ferron, J. ;
Fredrickson, E. D. ;
Kessel, C. E. ;
LeBlanc, B. P. ;
Levinton, F. ;
Manickam, J. ;
Mueller, D. ;
Ramad, R. ;
Stevenson, T. ;
Stutman, D. ;
Taylor, G. ;
Tritz, K. ;
Yu, H. .
NUCLEAR FUSION, 2007, 47 (09) :1376-1382
[6]   The lithium vapor box divertor [J].
Goldston, R. J. ;
Myers, R. ;
Schwartz, J. .
PHYSICA SCRIPTA, 2016, T167
[7]  
Grinberg G.A., 1961, APPL MATH MECH-ENGL, V25, P1536, DOI [10.1016/0021-8928(62)90133-8, DOI 10.1016/0021-8928(62)90133-8]
[8]  
Grinberg G.A., 1962, APPL MATH MECH-ENGL, V26, P106, DOI [10.1016/0021-8928(62)90105-3, DOI 10.1016/0021-8928(62)90105-3]
[9]   MAGNETOHYDRODYNAMIC FLOW IN RECTANGULAR DUCTS .2. [J].
HUNT, JCR ;
STEWARTSON, K .
JOURNAL OF FLUID MECHANICS, 1965, 23 :563-+
[10]   Critical Exploration of Liquid Metal Plasma-Facing Components in a Fusion Nuclear Science Facility [J].
Kessel, C. E. ;
Andruczyk, D. ;
Blanchard, J. P. ;
Bohm, T. ;
Davis, A. ;
Hollis, K. ;
Humrickhouse, P. W. ;
Hvasta, M. ;
Jaworski, M. ;
Jun, J. ;
Katoh, Y. ;
Khodak, A. ;
Klein, J. ;
Kolemen, E. ;
Larsen, G. ;
Majeski, R. ;
Merrill, B. J. ;
Morley, N. B. ;
Neilson, G. H. ;
Pint, B. ;
Rensink, M. E. ;
Rognlien, T. D. ;
Rowcliffe, A. F. ;
Smolentsev, S. ;
Tillack, M. S. ;
Waganer, L. M. ;
Wallace, G. M. ;
Wilson, P. ;
Yoon, S. -J. .
FUSION SCIENCE AND TECHNOLOGY, 2019, 75 (08) :886-917