The influence of strain rate, deformation temperature and stacking fault energy on the mechanical properties of Cu alloys

被引:38
作者
Gong, Y. L. [1 ]
Wen, C. E. [3 ]
Wu, X. X. [2 ]
Ren, S. Y. [2 ]
Cheng, L. P. [2 ]
Zhu, X. K. [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Sci, Kunming, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming, Yunnan, Peoples R China
[3] Swinburne Univ Technol, Fac Engn & Ind Sci, Hawthorn, Vic 3122, Australia
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2013年 / 583卷
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Copper alloys; Stacking fault energy (SFE); Strain rate; Temperature; Mechanical properties; SEVERE PLASTIC-DEFORMATION; MICROSTRUCTURAL EVOLUTION; AL ALLOYS; NANOSTRUCTURED METAL; GRAINED MATERIALS; COPPER; STRENGTH; ATTRITION; DUCTILITY; SIZE;
D O I
10.1016/j.msea.2013.07.001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cu-Ge alloys with different stacking fault energies (SFEs) were prepared by induction melting and processed by severe plastic deformation (SPD) using three different deformation techniques, including rolling at room temperature (RTR), rolling at the liquid nitrogen temperature (LNR), and Split Hopkinson Pressure Bar (SHPB) impact followed by room temperature rolling (HK+RTR). The effects of SFE, strain rate and deformation temperature on the microstructures and mechanical properties were systematically investigated by X-ray diffraction analyses and tensile tests. It was found that the dislocation density and twin density of all the Cu alloys after the SPD processing increased with decreasing SFE, increasing strain rate or reducing deformation temperature, which led to simultaneously enhanced strength and improved ductility due to effective grain refinement. The mechanical properties of the Cu alloys can be optimized to a combination of high strength and excellent ductility by lowering the SFE, the intrinsic property of metals, or manipulating the extrinsic deformation conditions, that is, increasing strain rate, and/or decreasing deformation temperature. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 204
页数:6
相关论文
共 41 条
[1]   Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys [J].
Bahmanpour, H. ;
Kauffmann, A. ;
Khoshkhoo, M. S. ;
Youssef, K. M. ;
Mula, S. ;
Freudenberger, J. ;
Eckert, J. ;
Scattergood, R. O. ;
Koch, C. C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 529 :230-236
[2]   Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper-zinc alloys [J].
Balogh, Levente ;
Ungar, Tamas ;
Zhao, Yonghao ;
Zhu, Y. T. ;
Horita, Zenji ;
Xu, Cheng ;
Langdon, Terence G. .
ACTA MATERIALIA, 2008, 56 (04) :809-820
[3]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[4]   Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy [J].
Gubicza, Jeno ;
Chinh, Nguyen Q. ;
Labar, Janos L. ;
Hegedus, Zoltan ;
Langdon, Terence G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (03) :752-760
[5]   Effects of Strain Rate and Deformation Temperature on Microstructures and Hardness in Plastically Deformed Pure Aluminum [J].
Huang, F. ;
Tao, N. R. ;
Lu, K. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2011, 27 (01) :1-7
[6]   Principle of equal-channel angular pressing for the processing of ultra-fine grained materials [J].
Iwahashi, Y ;
Wang, JT ;
Horita, Z ;
Nemoto, M ;
Langdon, TG .
SCRIPTA MATERIALIA, 1996, 35 (02) :143-146
[7]   Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures [J].
Li, Y. S. ;
Tao, N. R. ;
Lu, K. .
ACTA MATERIALIA, 2008, 56 (02) :230-241
[8]   Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation [J].
Li, Y. S. ;
Zhang, Y. ;
Tao, N. R. ;
Lu, K. .
ACTA MATERIALIA, 2009, 57 (03) :761-772
[9]   Work hardening of polycrystalline Cu with nanoscale twins [J].
Lu, L. ;
You, Z. S. ;
Lu, K. .
SCRIPTA MATERIALIA, 2012, 66 (11) :837-842
[10]   Ultrahigh strength and high electrical conductivity in copper [J].
Lu, L ;
Shen, YF ;
Chen, XH ;
Qian, LH ;
Lu, K .
SCIENCE, 2004, 304 (5669) :422-426