Sustainable green technology on wastewater treatment: The evaluation of enhanced single chambered up-flow membrane-less microbial fuel cell

被引:14
|
作者
Thung, Wei-Eng [1 ]
Ong, Soon-An [1 ]
Ho, Li-Ngee [2 ]
Wong, Yee-Shian [1 ]
Ridwan, Fahmi [1 ]
Oon, Yoong-Ling [1 ]
Oon, Yoong-Sin [1 ]
Lehl, Harvinder Kaur [1 ]
机构
[1] Univ Malaysia Perlis, Sch Environm Engn, Water Res Grp WAREG, Arau 02600, Perlis, Malaysia
[2] Univ Malaysia Perlis, Sch Mat Engn, Arau 02600, Perlis, Malaysia
来源
JOURNAL OF ENVIRONMENTAL SCIENCES | 2018年 / 66卷
关键词
MFC; Up-flow; Membrane-less; KCl concentration; COD; Ionic strength; Biocathode; Biofllm; PROTON-EXCHANGE MEMBRANE; ELECTRICITY-GENERATION; POWER-GENERATION; BIOELECTRICITY GENERATION; LISTERIA-MONOCYTOGENES; CATHODE; PERFORMANCE; NACL; GROWTH; KCL;
D O I
10.1016/j.jes.2017.05.010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell (UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the performance under different operational conditions which affect the chemical oxygen demand (COD) reduction and power generation, including the increase of KCl concentration (MFC1) and COD concentration (MFC2). The results showed that the increase of KCl concentration is an important factor in up-flow membrane-less MFC to enhance the ease of electron transfer from anode to cathode. The increase of COD concentration in MFC2 could led to the drop of voltage output due to the prompt of biofilm growth in MFC2 cathode which could increase the internal resistance. It also showed that the COD concentration is a vital issue in up-flow membrane-less MFC. Despite the COD reduction was up to 96%, the power output remained constrained. (C) 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
引用
收藏
页码:295 / 300
页数:6
相关论文
共 50 条
  • [1] Sustainable green technology on wastewater treatment:The evaluation of enhanced single chambered up-flow membrane-less microbial fuel cell
    Wei-Eng Thung
    Soon-An Ong
    Li-Ngee Ho
    Yee-Shian Wong
    Fahmi Ridwan
    Yoong-Ling Oon
    Yoong-Sin Oon
    Harvinder Kaur Lehl
    Journal of Environmental Sciences, 2018, (04) : 295 - 300
  • [2] A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater
    Thung, Wei-Eng
    Ong, Soon-An
    Ho, Li-Ngee
    Wong, Yee-Shian
    Ridwan, Fahmi
    Oon, Yoong-Ling
    Oon, Yoong-Sin
    Lehl, Harvinder Kaur
    BIORESOURCE TECHNOLOGY, 2015, 197 : 284 - 288
  • [3] Bioelectricity Generation in Batch-Fed Up-Flow Membrane-Less Microbial Fuel Cell: Effect of Surface Morphology of Carbon Materials as Aqeuous Biocathodes
    Thung, Wei-Eng
    Ong, Soon-An
    Ho, Li-Ngee
    Wong, Yee-Shian
    Ridwan, Fahmi
    Oon, Yoong-Ling
    Oon, Yoong-Sin
    Lehl, Harvinder Kaur
    WATER AIR AND SOIL POLLUTION, 2016, 227 (08):
  • [4] Simultaneous Wastewater Treatment and Power Generation with Innovative Design of an Upflow Membrane-Less Microbial Fuel Cell
    Thung, Wei-Eng
    Ong, Soon-An
    Ho, Li-Ngee
    Wong, Yee-Shian
    Oon, Yoong-Ling
    Oon, Yoong-Sin
    Lehl, Harvinder Kaur
    WATER AIR AND SOIL POLLUTION, 2015, 226 (05):
  • [5] Electricity generation in membrane-less single chambered microbial fuel cell
    Singh, Shweta
    Dwivedi, Chandrakant
    Pandey, Anjana
    2016 2ND IEEE INTERNATIONAL CONFERENCE ON CONTROL, COMPUTING, COMMUNICATION AND MATERIALS (ICCCCM), 2016,
  • [6] Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell
    Aldrovandi, Aba
    Marsili, Enrico
    Stante, Loredana
    Paganin, Patrizia
    Tabacchioni, Silvia
    Giordano, Andrea
    BIORESOURCE TECHNOLOGY, 2009, 100 (13) : 3252 - 3260
  • [7] Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater
    Wang, Haiping
    Jiang, Sunny C.
    Wang, Yun
    Xiao, Bo
    BIORESOURCE TECHNOLOGY, 2013, 138 : 109 - 116
  • [8] Simultaneous Wastewater Treatment and Power Generation with Innovative Design of an Upflow Membrane-Less Microbial Fuel Cell
    Wei-Eng Thung
    Soon-An Ong
    Li-Ngee Ho
    Yee-Shian Wong
    Yoong-Ling Oon
    Yoong-Sin Oon
    Harvinder Kaur Lehl
    Water, Air, & Soil Pollution, 2015, 226
  • [9] Biodegradation of Acid Orange 7 in a combined anaerobic-aerobic up-flow membrane-less microbial fuel cell: Mechanism of biodegradation and electron transfer
    Thung, Wei-Eng
    Ong, Soon-An
    Ho, Li-Ngee
    Wong, Yee-Shian
    Ridwan, Fahmi
    Lehl, Harvinder Kaur
    Oon, Yoong-Ling
    Oon, Yoong-Sin
    CHEMICAL ENGINEERING JOURNAL, 2018, 336 : 397 - 405
  • [10] Bioelectricity Generation in Batch-Fed Up-Flow Membrane-Less Microbial Fuel Cell: Effect of Surface Morphology of Carbon Materials as Aqeuous Biocathodes
    Wei-Eng Thung
    Soon-An Ong
    Li-Ngee Ho
    Yee-Shian Wong
    Fahmi Ridwan
    Yoong-Ling Oon
    Yoong-Sin Oon
    Harvinder Kaur Lehl
    Water, Air, & Soil Pollution, 2016, 227