Asymptotic elasticity in atomic monoids

被引:7
作者
Baginski, P
Chapman, ST
Holden, MT
Moore, TA
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Pomona Coll, Dept Math, Claremont, CA 91711 USA
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
[4] Trinity Univ, Dept Math, San Antonio, TX 78212 USA
关键词
D O I
10.1007/s00233-005-0544-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a commutative atomic monoid (i.e. every nonzero nonunit of M can be factored as a product of irreducible elements). Let p(x) denote the elasticity of x is an element of M; R(M)={rho(x) vertical bar x is an element of M} the set of elasticities of elements in M, and rho(M) = sup R(M) the elasticity of M. Define (rho) over bar (x)=lim(n ->infinity)(x(n)) to be the asymptotic elasticity of x. We determine some basic properties of the function (p) over bar and determine its image for certain block monoids.
引用
收藏
页码:134 / 142
页数:9
相关论文
共 15 条