Pressure reconstruction for weak solutions of the two-phase incompressible Navier-Stokes equations with surface tension

被引:5
作者
Abels, Helmut [1 ]
Daube, Johannes [2 ]
Kraus, Christiane [3 ]
机构
[1] Univ Regensburg, Fak Math, Univ Str 31, D-93053 Regensburg, Germany
[2] Univ Freiburg, Abt Angew Math, Hermann Herder Str 10, D-79104 Freiburg, Germany
[3] Weierstr Inst, Mohrenstr 39, D-10117 Berlin, Germany
关键词
Fluid mechanics; Navier-Stokes equations; free boundary problems; surface tension; PARABOLIC PDES;
D O I
10.3233/ASY-181507
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the two-phase incompressible Navier-Stokes equations with surface tension, we derive an appropriate weak formulation incorporating a variational formulation using divergence-free test functions. We prove a consistency result to justify our definition and, under reasonable regularity assumptions, we reconstruct the pressure function from the weak formulation.
引用
收藏
页码:51 / 86
页数:36
相关论文
共 26 条
[11]  
Denisova IV., 1994, Journal of Mathematical Sciences, V70, P1717, DOI DOI 10.1007/BF02149145
[12]  
Evans L.C., 1992, Measure theory and fine properties of functions
[13]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[14]  
Kimura M., 2008, Jindrich Necas Center for Mathematical Modeling Lecture notes, VIV, P39
[15]   Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension [J].
Koehne, Matthias ;
Pruss, Jan ;
Wilke, Mathias .
MATHEMATISCHE ANNALEN, 2013, 356 (02) :737-792
[16]  
Lions J. L., 1968, PROBLEMES LIMITES NO, V1, pXIX
[17]  
Nagele P, 2015, THESIS, DOI [10.6094/UNIFR/10187, DOI 10.6094/UNIFR/10187]
[18]  
Plotnikov P.I., 1993, SIB MAT ZH, V34, P127
[19]  
Plotnikov P. I., 1998, NAVIER STOKES EQUATI, P217
[20]  
Plotnikov P.I., 1993, SIB MAT ZH, V34, piii