Pressure reconstruction for weak solutions of the two-phase incompressible Navier-Stokes equations with surface tension

被引:5
作者
Abels, Helmut [1 ]
Daube, Johannes [2 ]
Kraus, Christiane [3 ]
机构
[1] Univ Regensburg, Fak Math, Univ Str 31, D-93053 Regensburg, Germany
[2] Univ Freiburg, Abt Angew Math, Hermann Herder Str 10, D-79104 Freiburg, Germany
[3] Weierstr Inst, Mohrenstr 39, D-10117 Berlin, Germany
关键词
Fluid mechanics; Navier-Stokes equations; free boundary problems; surface tension; PARABOLIC PDES;
D O I
10.3233/ASY-181507
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the two-phase incompressible Navier-Stokes equations with surface tension, we derive an appropriate weak formulation incorporating a variational formulation using divergence-free test functions. We prove a consistency result to justify our definition and, under reasonable regularity assumptions, we reconstruct the pressure function from the weak formulation.
引用
收藏
页码:51 / 86
页数:36
相关论文
共 26 条
[1]  
Abels H., 2018, HDB MATH ANAL MECH V, P1268
[2]   On some linear parabolic PDEs on moving hypersurfaces [J].
Alphonse, Amal ;
Elliott, Charles M. ;
Stinner, Bjoern .
INTERFACES AND FREE BOUNDARIES, 2015, 17 (02) :157-187
[3]   An abstract framework for parabolic PDEs on evolving spaces [J].
Alphonse, Amal ;
Elliott, Charles M. ;
Stinner, Bjoern .
PORTUGALIAE MATHEMATICA, 2015, 72 (01) :1-46
[4]  
Amann H., 1995, Monographs in Mathematics, V89
[5]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI [10.1093/oso/9780198502456.001.0001, 10.1017/S0024609301309281]
[6]  
[Anonymous], 2001, GRUNDLEHREN MATH WIS
[7]  
[Anonymous], 2013, STUDY INCOMPRESSIBLE
[8]  
Daube J., 2016, THESIS, DOI [10.6094/UNIFR/11679, DOI 10.6094/UNIFR/11679]
[9]  
Deckelnick K, 2005, ACTA NUMER, V14, P139, DOI 10.1017/S0962492904000224
[10]  
Denisova I.V., 2012, J. Math. Sci, V185, P20, DOI [10.1007/s10958-012-0951-8, DOI 10.1007/S10958-012-0951-8]