Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-Based Approach

被引:379
作者
Tiulpin, Aleksei [1 ]
Thevenot, Jerome [1 ]
Rahtu, Esa [3 ]
Lehenkari, Petri [2 ]
Saarakkala, Simo [1 ,4 ]
机构
[1] Univ Oulu, Res Unit Med Imaging Phys & Technol, Oulu, Finland
[2] Univ Oulu, Fac Med, Dept Anat & Cell Biol, Inst Canc Res & Translat Med, Oulu, Finland
[3] Tampere Univ Technol, Dept Signal Proc, Tampere, Finland
[4] Oulu Univ Hosp, Dept Diagnost Radiol, Oulu, Finland
基金
美国国家卫生研究院;
关键词
CLASSIFICATION; VALIDITY;
D O I
10.1038/s41598-018-20132-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Knee osteoarthritis (OA) is the most common musculoskeletal disorder. OA diagnosis is currently conducted by assessing symptoms and evaluating plain radiographs, but this process suffers from subjectivity. In this study, we present a new transparent computer-aided diagnosis method based on the Deep Siamese Convolutional Neural Network to automatically score knee OA severity according to the Kellgren-Lawrence grading scale. We trained our method using the data solely from the Multicenter Osteoarthritis Study and validated it on randomly selected 3,000 subjects (5,960 knees) from Osteoarthritis Initiative dataset. Our method yielded a quadratic Kappa coefficient of 0.83 and average multiclass accuracy of 66.71% compared to the annotations given by a committee of clinical experts. Here, we also report a radiological OA diagnosis area under the ROC curve of 0.93. Besides this, we present attention maps highlighting the radiological features affecting the network decision. Such information makes the decision process transparent for the practitioner, which builds better trust toward automatic methods. We believe that our model is useful for clinical decision making and for OA research; therefore, we openly release our training codes and the data set created in this study.
引用
收藏
页数:10
相关论文
共 33 条
[1]  
Antony J., 2016, ARXIV160902469
[2]  
Antony J., 2017, ARXIV170309856
[3]  
Cheng JZ, 2016, SCI REP-UK, V6, DOI [10.1038/srep24454, 10.1038/srep25671]
[4]   Learning a similarity metric discriminatively, with application to face verification [J].
Chopra, S ;
Hadsell, R ;
LeCun, Y .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :539-546
[5]  
Cross M., 2014, ANN RHEUMATIC DIS AN, V2013
[6]   Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and OARSI atlas criteria [J].
Culvenor, Adam G. ;
Engen, Cathrine N. ;
Oiestad, Britt Elin ;
Engebretsen, Lars ;
Risberg, May Arna .
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2015, 23 (12) :3532-3539
[7]  
DACRE JE, 1989, BRIT J RHEUMATOL, V28, P506
[8]   The Invisible Gorilla Strikes Again Sustained Inattentional Blindness in Expert Observers [J].
Drew, Trafton ;
Vo, Melissa L. -H. ;
Wolfe, Jeremy M. .
PSYCHOLOGICAL SCIENCE, 2013, 24 (09) :1848-1853
[9]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[10]   Association Between Subchondral Bone Structure and Osteoarthritis Histopathological Grade [J].
Finnila, Mikko A. J. ;
Thevenot, Jerome ;
Aho, Olli-Matti ;
Tiitu, Virpi ;
Rautiainen, Jari ;
Kauppinen, Sami ;
Nieminen, Miika T. ;
Pritzker, Kenneth ;
Valkealahti, Maarit ;
Lehenkari, Petri ;
Saarakkala, Simo .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2017, 35 (04) :785-792