A high power density single flow zinc-nickel battery with three-dimensional porous negative electrode

被引:87
作者
Cheng, Yuanhui [1 ,2 ]
Zhang, Huamin [1 ]
Lai, Qinzhi [1 ]
Li, Xianfeng [1 ]
Shi, Dingqin [1 ]
Zhang, Liqun [1 ,2 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Div Energy Storage, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
关键词
Flow batteries; Electrochemistry; Energy storage; Porous electrode; Zinc; ENERGY-STORAGE; ALKALINE-SOLUTION; FUEL-CELL; BEHAVIOR; PERFORMANCE; SYSTEM; MODEL; FOAM;
D O I
10.1016/j.jpowsour.2013.04.121
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low power density (operated current density) is one critical obstacle to the development of single flow zinc nickel batteries (ZNBs). Three-dimensional porous nickel foams (NFs) are first introduced to ZNBs to improve power density. The relationship between utilized electrode area, potential distribution and operated current density has been studied. A high coulombic efficiency (97.3%) and energy efficiency (80.1%) are obtained at 80 mA cm(-2) over 200 cycles, which is the highest value ever reported for ZNBs. The power density is improved nearly fourfold to 83 W kg(-1). The results indicate that three-dimensional porous electrodes are more suitable as negative electrodes for ZNBs under high operated current densities. This provides an effective way to improve power density of ZNBs and will arouse a new revolution in the development of flow batteries. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:196 / 202
页数:7
相关论文
共 33 条
  • [1] A new application for nickel foam in alkaline fuel cells
    Bidault, F.
    Brett, D. J. L.
    Middleton, P. H.
    Abson, N.
    Brandon, N. P.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (16) : 6799 - 6808
  • [2] DEPOSITION AND DISSOLUTION OF ZINC IN ALKALINE SOLUTIONS
    BOCKRIS, JOM
    NAGY, Z
    DAMJANOVIC, A
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1972, 119 (03) : 285 - +
  • [3] Preliminary study of single flow zinc-nickel battery
    Cheng, Jie
    Zhang, Li
    Yang, Yu-Sheng
    Wen, Yue-Hua
    Cao, Gao-Ping
    Wang, Xin-Dong
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (11) : 2639 - 2642
  • [4] Redox flow cells for energy conversion
    de Leon, C. Ponce
    Frias-Ferrer, A.
    Gonzalez-Garcia, J.
    Szanto, D. A.
    Walsh, F. C.
    [J]. JOURNAL OF POWER SOURCES, 2006, 160 (01) : 716 - 732
  • [5] de Leon C.Ponce., 2009, Encyclopedia of Electrochemical Power Sources, P487, DOI DOI 10.1016/B978-044452745-5.00856-X
  • [6] A review of energy storage technologies for wind power applications
    Diaz-Gonzalez, Francisco
    Sumper, Andreas
    Gomis-Bellmunt, Oriol
    Villafafila-Robles, Roberto
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (04) : 2154 - 2171
  • [7] An improved model of potential and current distribution within a flow-through porous electrode
    Doherty, T
    Sunderland, JG
    Roberts, EPL
    Pickett, DJ
    [J]. ELECTROCHIMICA ACTA, 1996, 41 (04) : 519 - 526
  • [8] Electrical Energy Storage for the Grid: A Battery of Choices
    Dunn, Bruce
    Kamath, Haresh
    Tarascon, Jean-Marie
    [J]. SCIENCE, 2011, 334 (6058) : 928 - 935
  • [9] True Performance Metrics in Electrochemical Energy Storage
    Gogotsi, Y.
    Simon, P.
    [J]. SCIENCE, 2011, 334 (6058) : 917 - 918
  • [10] Surface Science and Electrochemical Analysis of Nickel Foams
    Grden, Michal
    Alsabet, Mohammad
    Jerkiewicz, Gregory
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (06) : 3012 - 3021