A high power density single flow zinc-nickel battery with three-dimensional porous negative electrode

被引:90
作者
Cheng, Yuanhui [1 ,2 ]
Zhang, Huamin [1 ]
Lai, Qinzhi [1 ]
Li, Xianfeng [1 ]
Shi, Dingqin [1 ]
Zhang, Liqun [1 ,2 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Div Energy Storage, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
关键词
Flow batteries; Electrochemistry; Energy storage; Porous electrode; Zinc; ENERGY-STORAGE; ALKALINE-SOLUTION; FUEL-CELL; BEHAVIOR; PERFORMANCE; SYSTEM; MODEL; FOAM;
D O I
10.1016/j.jpowsour.2013.04.121
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low power density (operated current density) is one critical obstacle to the development of single flow zinc nickel batteries (ZNBs). Three-dimensional porous nickel foams (NFs) are first introduced to ZNBs to improve power density. The relationship between utilized electrode area, potential distribution and operated current density has been studied. A high coulombic efficiency (97.3%) and energy efficiency (80.1%) are obtained at 80 mA cm(-2) over 200 cycles, which is the highest value ever reported for ZNBs. The power density is improved nearly fourfold to 83 W kg(-1). The results indicate that three-dimensional porous electrodes are more suitable as negative electrodes for ZNBs under high operated current densities. This provides an effective way to improve power density of ZNBs and will arouse a new revolution in the development of flow batteries. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:196 / 202
页数:7
相关论文
共 33 条
[1]   A new application for nickel foam in alkaline fuel cells [J].
Bidault, F. ;
Brett, D. J. L. ;
Middleton, P. H. ;
Abson, N. ;
Brandon, N. P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (16) :6799-6808
[2]   DEPOSITION AND DISSOLUTION OF ZINC IN ALKALINE SOLUTIONS [J].
BOCKRIS, JOM ;
NAGY, Z ;
DAMJANOVIC, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1972, 119 (03) :285-+
[3]   Preliminary study of single flow zinc-nickel battery [J].
Cheng, Jie ;
Zhang, Li ;
Yang, Yu-Sheng ;
Wen, Yue-Hua ;
Cao, Gao-Ping ;
Wang, Xin-Dong .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (11) :2639-2642
[4]   Redox flow cells for energy conversion [J].
de Leon, C. Ponce ;
Frias-Ferrer, A. ;
Gonzalez-Garcia, J. ;
Szanto, D. A. ;
Walsh, F. C. .
JOURNAL OF POWER SOURCES, 2006, 160 (01) :716-732
[5]  
de Leon C.Ponce., 2009, Encyclopedia of Electrochemical Power Sources, P487, DOI DOI 10.1016/B978-044452745-5.00856-X
[6]   A review of energy storage technologies for wind power applications [J].
Diaz-Gonzalez, Francisco ;
Sumper, Andreas ;
Gomis-Bellmunt, Oriol ;
Villafafila-Robles, Roberto .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (04) :2154-2171
[7]   An improved model of potential and current distribution within a flow-through porous electrode [J].
Doherty, T ;
Sunderland, JG ;
Roberts, EPL ;
Pickett, DJ .
ELECTROCHIMICA ACTA, 1996, 41 (04) :519-526
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918
[10]   Surface Science and Electrochemical Analysis of Nickel Foams [J].
Grden, Michal ;
Alsabet, Mohammad ;
Jerkiewicz, Gregory .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (06) :3012-3021