An Approach of Proximity in Rough Set Theory

被引:16
作者
Tiwari, Surabhi [1 ]
Singh, Pankaj Kumar [1 ]
机构
[1] Motilal Nehru Natl Inst Technol Allahabad, Dept Math, Prayagraj 211004, India
关键词
Rough sets; proximity spaces; grill; ultra filter; cluster; clan; COMPLETENESS; NEARNESS;
D O I
10.3233/FI-2019-1802
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we have constructed topological structures on rough sets by choosing the path of proximity relations on approximation spaces. So, by this virtue of purpose, we have used rough metric to define nearness concept between rough sets. Some basic results have been proved on this new nearness structure named as rough proximity. The study is well supported by examples. Finally, the theory is developed to construct the compactification of a rough proximity space.
引用
收藏
页码:251 / 271
页数:21
相关论文
共 44 条
[1]  
[Anonymous], 1909, ATTI 4 CONGRESSO INT
[2]  
[Anonymous], 2012, ARCH ENVIRON CON TOX, DOI [10.1007/s00244-011-9745-0, DOI 10.1007/S00244-011-9745-0]
[3]  
Biswas R., 1996, B POUR LES SOUS ENS, V68, P21
[4]  
DOITCHINOV D, 1988, TOPOL APPL, V30, P127, DOI 10.1016/0166-8641(88)90012-0
[5]  
Efremovic V.A, 1952, Mat. Sb., V31, P189
[6]  
Hajri MA, 2016, TATRA MOUNTAINS MATH, V66, P1, DOI [10.1515/tmmp-2016-0015, DOI 10.1515/TMMP-2016-0015]
[7]  
Henry C, 2007, LECT NOTES ARTIF INT, V4482, P475
[8]  
HERRLICH H., 1974, Gen. Topol. Appl., V4, P191, DOI DOI 10.1016/0016-660X(74)90021-X
[9]  
Kelley John L, 2017, General Topology
[10]  
Khare M., 1994, INT J MATH MATH SCI, P1, DOI 10.1155/2010/409804