Generalized common fixed point theorems in complex valued metric spaces and applications

被引:99
作者
Sintunavarat, Wutiphol [1 ]
Kumam, Poom [1 ]
机构
[1] KMUTT, Dept Math, Fac Sci, Bangkok 10140, Thailand
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2012年
关键词
complex valued metric spaces; fixed points; common fixed points; weakly compatible mappings; MAPPINGS;
D O I
10.1186/1029-242X-2012-84
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Azam et al. introduced new spaces called the complex valued metric spaces and established the existence of fixed point theorems under the contraction condition. In this article, we extend and improve the condition of contraction of the results of Azam et al. and also apply the main result to the unique common solution of system of Urysohn integral equation.
引用
收藏
页数:12
相关论文
共 32 条
[1]  
Abbas M, 2011, J MATH INEQUAL, V5, P287
[2]  
[Anonymous], 2003, OXFORD LECT SER MATH
[3]   COMMON FIXED POINT THEOREMS IN COMPLEX VALUED METRIC SPACES [J].
Azam, Akbar ;
Fisher, Brian ;
Khan, M. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (03) :243-253
[4]  
Banach S., 1922, Fund. Math., V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[5]   Modular metric spaces, I: Basic concepts [J].
Chistyakov, Vyacheslav V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (01) :1-14
[6]  
Cho Y.J., 1993, MATH JAPONICA, V38, P497
[7]   Common fixed point theorems on generalized distance in ordered cone metric spaces [J].
Cho, Yeol Je ;
Saadati, Reza ;
Wang, Shenghua .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) :1254-1260
[8]   Gregus type fixed points for weakly compatible maps [J].
Djoudi, A ;
Nisse, L .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2003, 10 (03) :369-378
[9]   Generalization of fixed point theorems in ordered metric spaces concerning generalized distance [J].
Graily, Elham ;
Vaezpour, Seiyed Mansour ;
Saadati, Reza ;
Cho, Yeol J. E. .
FIXED POINT THEORY AND APPLICATIONS, 2011,
[10]   Some fixed point generalizations are not real generalizations [J].
Haghi, R. H. ;
Rezapour, Sh. ;
Shahzad, N. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) :1799-1803