Generic submanifolds of generalized complex space forms

被引:0
|
作者
Tripathi, MM [1 ]
机构
[1] UNIV LUCKNOW,DEPT MATH & ASTRON,LUCKNOW 226007,UTTAR PRADESH,INDIA
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1997年 / 50卷 / 3-4期
关键词
generalized complex space form; holomorphic; totally real; slant; CR-; generalized CR-; generic and skew CR-submanifolds;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we study generic submanifolds (in the sense of Ronsse) of generalized complex space forms, where such submanifolds generalize/imply holomorphic, totally real, slant, CR-, anti-holomorphic, f-, generic (in the sense of Chen), generalized CR-, and skew CR submanifolds. Some examples along with an open problem are given. A necessary and sufficient condition for integrability of totally real distribution has been found. Ricci tensor and scalar curvature of generic submanifolds have been studied. The paper ends with some results for totally umbilical generic submanifolds.
引用
收藏
页码:373 / 392
页数:20
相关论文
共 50 条
  • [31] GENERALIZED COMPLEX SPACE FORMS
    Manjulamma, Uppara
    Nagaraja, H. G.
    Kumar, Kiran D. L.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 13 (02): : 203 - 219
  • [32] Ideal Kaehlerian slant submanifolds in complex space forms
    Mihai, I
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (03) : 941 - 951
  • [33] Gap theorems for Lagrangian submanifolds in complex space forms
    Cao, Shunjuan
    Zhao, Entao
    GEOMETRIAE DEDICATA, 2021, 215 (01) : 315 - 331
  • [34] HOLOMORPHICITY OF MINIMAL SUBMANIFOLDS IN COMPLEX-SPACE FORMS
    DAJCZER, M
    THORBERGSSON, G
    MATHEMATISCHE ANNALEN, 1987, 277 (03) : 353 - 360
  • [35] On Product Minimal Lagrangian Submanifolds in Complex Space Forms
    Xiuxiu Cheng
    Zejun Hu
    Marilena Moruz
    Luc Vrancken
    The Journal of Geometric Analysis, 2021, 31 : 1934 - 1964
  • [36] The eigenvalues of β-Laplacian of slant submanifolds in complex space forms
    Alqahtani, Lamia Saeed
    Ali, Akram
    AIMS MATHEMATICS, 2024, 9 (02): : 3426 - 3439
  • [37] Gap theorems for Lagrangian submanifolds in complex space forms
    Shunjuan Cao
    Entao Zhao
    Geometriae Dedicata, 2021, 215 : 315 - 331
  • [38] On Product Minimal Lagrangian Submanifolds in Complex Space Forms
    Cheng, Xiuxiu
    Hu, Zejun
    Moruz, Marilena
    Vrancken, Luc
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1934 - 1964
  • [39] RICCI CURVATURE OF LAGRANGIAN SUBMANIFOLDS IN COMPLEX SPACE FORMS
    Oprea, Teodor
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (04): : 851 - 858
  • [40] A New Class of Slant Submanifolds in Generalized Sasakian Space Forms
    Pablo Alegre
    Joaquín Barrera
    Alfonso Carriazo
    Mediterranean Journal of Mathematics, 2020, 17