OpenStreetMap quality assessment using unsupervised machine learning methods

被引:26
|
作者
Jacobs, Kent T. [1 ]
Mitchell, Scott W. [1 ]
机构
[1] Carleton Univ, Dept Geog & Environm Studies, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
关键词
INFORMATION;
D O I
10.1111/tgis.12680
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
The reliability and quality of volunteered geographic information (VGI) continue to be pressing concerns. Many VGI projects lack standard geospatial data quality assurance procedures, and the reliability of contributors remains in question. Traditional approaches rely on comparing VGI to an "authoritative" or "gold standard" dataset to assess quality. This study investigates VGI quality by analysing the OpenStreetMap (OSM) database in Ottawa-Gatineau, focusing on historical map features and contributor data to gain an understanding of how users are contributing to the database, and their ability to do so accurately. Unsupervised machine learning analyses expose a cluster of experienced contributors classified as "OSM validators/experts", which are then further used to attribute data quality. They are identified through a combination of strong contribution loadings associated with the use and experience of advanced OSM editors, and weaker loadings associated with feature creation and frequency of contributions leading to further correction. Limitations are discussed with implications for future work.
引用
收藏
页码:1280 / 1298
页数:19
相关论文
共 50 条
  • [31] Cow Milk Quality Grading using Machine Learning Methods
    Neware, Shubhangi
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2023, 14 (01): : 1 - 7
  • [32] Distributed unsupervised learning using the multisoft machine
    Patané, G
    Russo, M
    INFORMATION SCIENCES, 2002, 143 (1-4) : 181 - 196
  • [33] Clustering superconductors using unsupervised machine learning
    Roter, B.
    Ninkovic, N.
    Dordevic, S. V.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2022, 598
  • [34] Bot detection using unsupervised machine learning
    Wei Wu
    Jaime Alvarez
    Chengcheng Liu
    Hung-Min Sun
    Microsystem Technologies, 2018, 24 : 209 - 217
  • [35] Estimating extinction using unsupervised machine learning
    Meingast, Stefan
    Lombardi, Marco
    Alves, Joao
    ASTRONOMY & ASTROPHYSICS, 2017, 601
  • [36] Prospectivity analysis using unsupervised machine learning
    Aranha, Malcolm
    Porwal, Alok
    16TH SGA BIENNIAL MEETING, 2022, VOL 1, 2022, : 9 - 12
  • [37] Bot detection using unsupervised machine learning
    Wu, Wei
    Alvarez, Jaime
    Liu, Chengcheng
    Sun, Hung-Min
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2018, 24 (01): : 209 - 217
  • [38] OpenStreetMap Data Quality Assessment via Deep Learning and Remote Sensing Imagery
    Xie, Xuejing
    Zhou, Yi
    Xu, Yongyang
    Hu, Yunbing
    Wu, Chunling
    IEEE ACCESS, 2019, 7 : 176884 - 176895
  • [39] Using Unsupervised Machine Learning to Predict Quality of Life After Total Knee Arthroplasty
    Hunter, Jennifer
    Soleymani, Farzan
    Viktor, Herna
    Michalowski, Wojtek
    Poitras, Stephane
    Beaule, Paul E.
    JOURNAL OF ARTHROPLASTY, 2024, 39 (03): : 677 - 682
  • [40] IMPROVING MEDICAL IMAGE PIXEL QUALITY USING MICQ UNSUPERVISED MACHINE LEARNING TECHNIQUE
    Ahmed, Syed Thouheed
    Kumar, S. Sreedhar
    Guptha, Nirmala S.
    Lavanya, N. L.
    Basha, Syed Muzamil
    Fathima, Afifa Salsabil
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2022, : 53 - 64