The stability in Ws,p(Γ) spaces of L2-projections on some convex sets

被引:12
作者
Casas, E
Raymond, JP [1 ]
机构
[1] Univ Toulouse 3, CNRS, UMR 5640, Lab MIP, F-31062 Toulouse 9, France
[2] Univ Cantabria, ETSI Ind & Telecomun, Dept Matemat Aplicada & Ciencias Computac, Santander, Spain
关键词
numerical approximation; optimal control; projection on a convex set; stability estimates;
D O I
10.1080/01630560600569940
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a polygonal open bounded subset of R-2, of boundary Gamma, we study stability estimates for the projection operator from L-1(Gamma) on a convex set K-h of continuous piecewise affine functions satisfying bound constraints. We establish stability estimates in L-p(Gamma) and in W-s,W-p(Gamma) for 1 <= p <= infinity and 0 < s <= 1. This kind of result plays a crucial role in error estimates for the numerical approximation of optimal control problems of partial differential equations with bilateral control constraints.
引用
收藏
页码:117 / 137
页数:21
相关论文
共 6 条
[1]  
Brenner S. C., 2007, Texts Appl. Math., V15
[2]  
CASAS E, 2005, UNPUB ERROR ESTIMATE
[3]   THE STABILITY IN LP AND W-P-1 OF THE L2-PROJECTION ONTO FINITE-ELEMENT FUNCTION-SPACES [J].
CROUZEIX, M ;
THOMEE, V .
MATHEMATICS OF COMPUTATION, 1987, 48 (178) :521-532
[4]   STABILITY IN LQ OF L2-PROJECTION INTO FINITE-ELEMENT FUNCTION SPACES [J].
DOUGLAS, J ;
DUPONT, T ;
WAHLBIN, L .
NUMERISCHE MATHEMATIK, 1974, 23 (03) :193-197
[5]   On a generalized L2 projection and some related stability estimates in Sobolev spaces [J].
Steinbach, O .
NUMERISCHE MATHEMATIK, 2002, 90 (04) :775-786
[6]  
Steinbach O, 2001, NUMER MATH, V88, P367, DOI 10.1007/s002110000238