On the blow-up criterion for the quasi-geostrophic equations in homogeneous Besov spaces

被引:0
|
作者
Zhang, Zujin [1 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-geostrophic equations; Blow-up criteria; Besov spaces; GLOBAL WELL-POSEDNESS; REGULARITY CRITERION; BEHAVIOR;
D O I
10.1016/j.camwa.2017.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the blow-up criterion for the quasi-geostrophic equations with dissipation Lambda(gamma) (0 < gamma < 1). By establishing a new trilinear estimate, we show that if theta is an element of L gamma/gamma+s-1(0, T; B-infinity,infinity(s) (R-2) ) for some s is an element of (1 - gamma/2, 1), then the solution can be extended smoothly past T. This improves and extends the corresponding results in Dong and Pavlovic (2009) ([32]) and Yuan (2010). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1038 / 1043
页数:6
相关论文
共 50 条
  • [31] On the Blow-Up Criterion for Incompressible Stokes–MHD Equations
    Ahmad Mohammad Alghamdi
    Sadek Gala
    Maria Alessandra Ragusa
    Results in Mathematics, 2018, 73
  • [32] Global well-posedness for the 2D dissipative quasi-geostrophic equations in modulation spaces
    Zhao, Weiren
    Chen, Jiecheng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (12) : 4246 - 4258
  • [33] A BLOW-UP CRITERION FOR THE MHD EQUATIONS WITH MASS DIFFUSION
    Fan, Jishan
    Nakamura, Gen
    Zhou, Yong
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (1-2) : 27 - 33
  • [34] Regularity Criteria for the Dissipative Quasi-Geostrophic Equations in Hölder Spaces
    Hongjie Dong
    Nataša Pavlović
    Communications in Mathematical Physics, 2009, 290 : 801 - 812
  • [35] DISSIPATIVE QUASI-GEOSTROPHIC EQUATIONS IN CRITICAL SOBOLEV SPACES: SMOOTHING EFFECT AND GLOBAL WELL-POSEDNESS
    Dong, Hongjie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (04) : 1197 - 1211
  • [36] A logarithmically improved regularity criterion for the surface quasi-geostrophic equation
    Wen, Zhihong
    Ye, Zhuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (04) : 1368 - 1377
  • [37] REGULARITY CRITERIA FOR THE GENERALIZED MAGNETOHYDRODYNAMIC EQUATIONS AND THE QUASI-GEOSTROPHIC EQUATIONS
    Fan, Jishan
    Gao, Hongjun
    Nakamura, Gen
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1059 - 1073
  • [38] REMARK ON THE BLOW-UP CRITERION OF STRONG SOLUTIONS TO THE NAVIER-STOKES EQUATIONS IN MULTIPLIER SPACES
    Gala, Sadek
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (05) : 1413 - 1418
  • [39] DECAY OF SOLUTIONS TO DISSIPATIVE MODIFIED QUASI-GEOSTROPHIC EQUATIONS
    Ferreira, Lucas C. F.
    Niche, Cesar J.
    Planas, Gabriela
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 287 - 301
  • [40] ON THE UNIQUENESS FOR SUB-CRITICAL QUASI-GEOSTROPHIC EQUATIONS
    Ferreira, Lucas C. F.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (01) : 57 - 62