Investigation of Self-Heating Effects in a 10-nm SOI-MOSFET With an Insulator Region Using Electrothermal Modeling

被引:27
作者
Nasri, F. [1 ]
Echouchene, F. [2 ]
Ben Aissa, M. F. [3 ]
Graur, I. [4 ]
Belmabrouk, H. [5 ]
机构
[1] Univ Monastir, Lab Elect & Microelect, Monastir 5000, Tunisia
[2] Univ Gafsa, Gafsa, Tunisia
[3] Res & Technol Ctr Energy, Borj Cedria, Tunisia
[4] Univ Aix Marseille, F-13284 Marseille, France
[5] Univ Monastir, Fac Sci Monastir, Monastir 5000, Tunisia
关键词
Electrothermal model; heat conduction; jump condition; nanoscale MOSFET; self-heating; SILICON-ON-INSULATOR; TEMPERATURE-JUMP; TRANSPORT; CONDUCTION;
D O I
10.1109/TED.2015.2447212
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the heat transfer and temperature distribution as well as electric fields in a 10-nm MOSFET and insulator region silicon-on-insulator MOSFET (IR-SOI-MOSFET). An electrothermal model based on a dual-phase-lag model coupled with a second-order temperature-jump boundary condition and drift-diffusion (D-D) model has been elaborated. The D-D model is used to take into account that the heat source by Joule effect and the width of the channel depends on the electrical fields. The finite-element method has been employed to generate the numerical results. The model has been validated on the basis of available numerical results. It is found that once the Fourier law ceases to be valid, our model is able to predict the phonon transport and electrical properties in nanostructures. In a technological viewpoint, the IR-SOI-MOSFET is more thermally efficient compared with a classical SOI-MOSFET.
引用
收藏
页码:2410 / 2415
页数:6
相关论文
共 21 条
  • [1] Hyperbolic heat conduction and local equilibrium: A second law analysis
    Barletta, A
    Zanchini, E
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1997, 40 (05) : 1007 - 1016
  • [2] Chen Z., 2006, FINITE ELEMENT METHO
  • [3] From Boltzmann transport equation to single-phase-lagging heat conduction
    Cheng, Lin
    Xu, Mingtian
    Wang, Liqiu
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (25-26) : 6018 - 6023
  • [4] Quantum-corrected drift-diffusion models for transport in semiconductor devices
    de Falco, C
    Gatti, E
    Lacaita, AL
    Sacco, R
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 204 (02) : 533 - 561
  • [5] Deissler R, 1964, INT J HEAT MASS TRAN, V7, P681, DOI DOI 10.1016/0017-9310(64)90161-9
  • [6] Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling
    Escobar, RA
    Ghai, SS
    Jhon, MS
    Amon, CH
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (1-2) : 97 - 107
  • [7] *IEEE, 1969, 308 IEEE
  • [8] Simulation Study of Quasi-Ballistic Transport in Asymmetric DG-MOSFET by Directly Solving Boltzmann Transport Equation
    Liu, Gai
    Du, Gang
    Lu, Tiao
    Liu, Xiaoyan
    Zhang, Pingwen
    Zhang, Xing
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2013, 12 (02) : 168 - 173
  • [9] Comparison of different phonon transport models for predicting heat conduction in silicon-on-insulator transistors
    Narumanchi, SVJ
    Murthy, JY
    Amon, CH
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (07): : 713 - 723
  • [10] Microscale thermal conduction based on Cattaneo-Vernotte model in silicon on insulator and Double Gate MOSFETs
    Nasri, F.
    Ben Aissa, M. F.
    Belmabrouk, H.
    [J]. APPLIED THERMAL ENGINEERING, 2015, 76 : 206 - 211