Right inverses for partial differential operators on spaces of Whitney functions

被引:0
作者
Cias, Tomasz [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
Spaces of smooth functions; linear partial differential equations with constant coefficients;
D O I
10.36045/bbms/1394544300
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For v is an element of R-n let K be a compact set in R-n containing a suitable smooth surface and such that the intersection {tv + x : t is an element of R} boolean AND K is a closed interval or a single point for all x is an element of K. We prove that every linear first order differential operator with constant coefficients in direction v on space of Whitney functions epsilon(K) admits a continuous linear right inverse.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 8 条
[1]  
Frerick L., 2001, THESIS
[2]   Extension operators for spaces of infinite differentiable Whitney jets [J].
Frerick, Leonhard .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 602 :123-154
[3]  
Hormander L., 1976, Linear Partial Differential Operators
[4]  
Lang S., 1987, CALCULUS SEVERAL VAR
[5]  
Malgrange B., 1966, Ideals of Differentiable Functions
[6]  
Meise R., 1997, Introduction to Functional Analysis
[7]  
Mishkov R. L., 2000, Int. J. Math. Sci., V24, P481
[8]  
TIDTEN M, 1979, MANUSCRIPTA MATH, V27, P291, DOI 10.1007/BF01309013