Linear codes using skew polynomials with automorphisms and derivations

被引:69
作者
Boucher, D. [1 ]
Ulmer, F. [1 ]
机构
[1] Univ Rennes 1, IRMAR UMR 6625, F-35042 Rennes, France
关键词
Error-correcting codes; Decoding; Finite fields; Skew polynomial rings; GABIDULIN CODES; DISTANCE; RINGS; RANK;
D O I
10.1007/s10623-012-9704-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work the definition of codes as modules over skew polynomial rings of automorphism type is generalized to skew polynomial rings, whose multiplication is defined using an automorphism and a derivation. This produces a more general class of codes which, in some cases, produce better distance bounds than module skew codes constructed only with an automorphism. Extending the approach of Gabidulin codes, we introduce new notions of evaluation of skew polynomials with derivations and the corresponding evaluation codes. We propose several approaches to generalize Reed-Solomon and BCH codes to module skew codes and for two classes we show that the dual of such a Reed-Solomon type skew code is an evaluation skew code. We generalize a decoding algorithm due to Gabidulin for the rank metric and derive families of Maximum Distance Separable and Maximum Rank Distance codes.
引用
收藏
页码:405 / 431
页数:27
相关论文
共 17 条
[1]   Isometries for rank distance and permutation group of Gabidulin codes [J].
Berger, TP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (11) :3016-3019
[2]   Skew-cyclic codes [J].
Boucher, D. ;
Geiselmann, W. ;
Ulmer, F. .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2007, 18 (04) :379-389
[3]  
Boucher D, 2009, LECT NOTES COMPUT SC, V5921, P38, DOI 10.1007/978-3-642-10868-6_3
[4]   Coding with skew polynomial rings [J].
Boucher, Delphine ;
Ulmer, Felix .
JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (12) :1644-1656
[5]  
Bronstein M., 1994, ROSSIISKAYA AKAD NAU, V1, P27
[6]  
Chaussade L., 2010, THESIS U RENNES 1
[7]   Skew codes of prescribed distance or rank [J].
Chaussade, Lionel ;
Loidreau, Pierre ;
Ulmer, Felix .
DESIGNS CODES AND CRYPTOGRAPHY, 2009, 50 (03) :267-284
[8]  
Cohn P. M., 1971, FREE RINGS THEIR REL
[9]  
Gabidulin E.M., 1992, LNCS, V573, P126
[10]  
Gabidulin EM., 1985, PROBL PEREDACHI INF, V21, P3