In recent years, Lattice Boltzmann methods (LBM) have been extended to solve the radiative transport equation (RTE), which describes radiative transport through absorbing and scattering media. With the present work, a new approach for solving RTE by LBM, referred to as RTLBM, is proposed for D3 Q7 grids. Its derivation is strongly linked to the P1-method, which approximates the RTE by a macroscopic diffusion equation with an additional sink term. For the fist time, a comprehensive evaluation of an RTLBM is shown. First of all, it is shown by a Chapman-Enskog expansion, that the proposed RTLB equation solves the corresponding macroscopic target diffusion equation with additional sink term. Based on corresponding analytical solutions, a stringent and extensive numerical error analysis, with focus on grid convergence and grid independence, is presented. An experimental order of convergence of two is observed solving the steady-state diffusion equation with additional sink term. (C) 2016 Elsevier B.V. All rights reserved.